
Int J Comput Vis
DOI 10.1007/s11263-012-0550-7

Exploring the Trade-off Between Accuracy and Observational
Latency in Action Recognition

Chris Ellis·Syed Zain Masood ·Marshall F. Tappen ·
Joseph J. LaViola Jr. · Rahul Sukthankar

Received: 5 December 2011 / Accepted: 19 July 2012
© Springer Science+Business Media, LLC 2012

Abstract An important aspect in designing interactive,
action-based interfaces is reliably recognizing actions with
minimal latency. High latency causes the system’s feedback
to lag behind user actions and thus signicantly degrades
the interactivity of the user experience. This paper presents
algorithms for reducing latency when recognizing actions.
We use a latency-aware learning formulation to train a lo-
gistic regression-based classier that automatically deter-
mines distinctive canonical poses from data and uses these
to robustly recognize actions in the presence of ambigu-
ous poses. We introduce a novel (publicly released) dataset
for the purpose of our experiments. Comparisons of our
method against both a Bag of Words and a Conditional Ran-
dom Field (CRF) classier show improved recognition per-
formance for both pre-segmented and online classication
tasks. Additionally, we employ GentleBoost to reduce our
feature set and further improve our results. We then present
experiments that explore the accuracy/latency trade-off over

S.Z. Masood and C. Ellis contributed equally towards this paper.

C. Ellis·S.Z. Masood () ·M.F. Tappen · J.J. LaViola Jr.
Department of Computer Science, University of Central Florida,
Orlando, FL 32826, USA
e-mail: smasood@eecs.ucf.edu

C. Ellis
e-mail: chris@eecs.ucf.edu

M.F. Tappen
e-mail: mtappen@eecs.ucf.edu

J.J. LaViola Jr.
e-mail: jjl@eecs.ucf.edu

R. Sukthankar
Google Research, Google Inc, Mountain View, CA 94043, USA
e-mail: rahuls@cs.cmu.edu

a varying number of actions. Finally, we evaluate our algo-
rithm on two existing datasets.

Keywords Action recognition · Observational latency ·
Computational latency ·Microsoft Kinect ·Multiple
instance learning · Conditional random eld · Bag of words

1 Introduction

With the introduction of the Nintendo Wii, Playstation
Move, and Microsoft Kinect controllers, human motion is
becoming an increasingly important part of interactive enter-
tainment. Beyond gaming, these technologies also have the
potential to revolutionize how humans interact with comput-
ers.

A key component to the success of these technologies
is the ability to recognize users’ actions. A successful in-
teractive system that is intuitive and pleasant to use should
embody two fundamental characteristics:

1. High Accuracy—The system must be accurate at recog-
nizing actions.

2. Low Latency—Latency is a key issue for interactive
experiences. Systems that lag behind user actions feel
cumbersome. This is particularly important for enter-
tainment applications, where problems with lag have re-
sulted in very negative reviews for some motion-based
games (Metacritic 2011).

Traditionally, accuracy has driven the design of recogni-
tion systems. This paper takes a different path by also focus-
ing on the latency in recognition. We pay particular attention
to a type of latency that we refer to as observational latency,
which is caused when the recognition system must wait for
the human to move or pose in a fashion that is clearly recog-
nizable. This is in contrast to computational latency, which

Int J Comput Vis

is caused by the recognition system itself. The focus of our
work is to develop a thorough understanding of the accu-
racy/latency trade-off that can be used to better design activ-
ity recognizers for interactive applications.

The contributions of this paper lie in both novel algo-
rithms and data. To make the measurement of observational
latency possible, we introduce a novel action dataset. This
set is unique in that it measures how quickly a recognition
system can overcome the ambiguity in initial poses when
performing an action.

Rather than manually selecting key poses for each ac-
tion as in Carlsson and Sullivan (2001), we present a novel
Logistic Regression learning framework that automatically
finds the most discriminative canonical body pose represen-
tation of each action and then performs classification using
these extracted poses. It should be noted that we do not as-
sume pre-defined prototype key poses for each action, but
instead choose the key pose through automated learning.
For reduced latency, we introduce an additional parameter-
controlled cost that forces the system to find a discrimina-
tive action pose by observing as few frames of the video
sequence as possible. This learning strategy makes it pos-
sible to rigorously explore the trade-off between accuracy
and latency when spotting actions in an input stream. Sec-
tion 6 shows how this classifier can significantly outperform
the baseline Bag of Words and Conditional Random Field
classifiers.

Additionally, we study the effects of reducing the feature
count using the GentleBoost algorithm. We find that we can
achieve similar classification accuracy by using a small sub-
set of our initial features. Furthermore, we analyze the im-
pact of reducing the number of actions in the classification
task on both the latency and the accuracy of the classifier.
We find that as actions are eliminated, the best achievable
accuracy improves at each latency range.

We also evaluate the performance of our algorithm
against both the MSRC-12 (Fothergill et al. 2012) and MSR
Action3D (Li et al. 2010) datasets. We classify actions in
MSRC-12 with high accuracy, along with most of the ac-
tions in the MSR Action 3D set as well. The failure cases in
the actions in MSR Action3D set are analyzed in Sect. 10.

2 Basic Approach and Assumptions

With the release of the Microsoft Kinect sensor, reasonably
accurate joint positions can be recovered in real-time. Since
we use Kinect sensor data, we assume that the user faces the
sensor and stands within its field of view. Our method could
be extended to non-depth video, but that would require some
method of estimating pose, such as Guan et al. (2009) and
Yang et al. (2010).

Table 1 The list of actions used in constructing the dataset

Balance Kick

Climb Up Punch

Climb Ladder Twist Left

Duck Twist Right

Hop Step Forward

Vault Step Back

Leap Step Left

Run Step Right

Each video in the dataset consists of one person perform-
ing one action, from a set of 16 actions, a single time.1 Fig-
ure 1 lists the set of actions used. These actions are chosen
based on experiments in Norton et al. (2010), which used the
game Mirror’s Edge to identify a set of actions which would
be natural for an interactive gaming experience. Section 6.2
reports results for simultaneously distinguishing between all
16 actions. Although the set of actions is not as extensive
as Raptis et al. (2011), it is still substantially larger than in
other previous work such as Li et al. (2010).

Each action is performed starting from a rest state, mak-
ing it possible to measure how quickly the action is rec-
ognized from this rest state. Gathering the actions in fash-
ion is reasonable because the vast majority of these actions,
which have been chosen through user studies in (Norton
et al. 2010), require returning to a rest pose before repeating
the actions. In the set of 16 actions in Table 1, the only ex-
ceptions to this are “balance” and “run” actions. In addition,
beginning each action from a rest pose makes it possible to
produce a more realistic estimate of latency in a system with
a variety of gestures. While modifications for special cases,
such as repeated combinations of punches, may be able to
reduce latency for special situations, our goal is to examine
latency as it would occur over a wide variety of gestures.

We gathered a new dataset, rather than using an existing
one such as the HumanEVA dataset (Sigal et al. 2010), be-
cause, at the time we began, previous datasets had not been
gathered in a fashion that makes it possible to measure the
latency in recognition from the moment the human begins
performing the actions. However, recently new datasets have
become available, and we present our results in Sect. 10.

2.1 Latency and Action Recognition

We define the latency of an action as the difference between
the time a user begins the action and the time the classi-
fier classifies the action. This total time has several different
components. At a high level, the latency can be broken down
into two parts:

1See Sect. 5 for more details on the data gathering process.

Int J Comput Vis

Fig. 1 These skeletons shows several of the poses associated with different actions. The skeleton on the left of each panel is the median of poses
associated with each action. The skeletons on the right are examples of poses considered to be most like the canonical pose in a particular video

Int J Comput Vis

1. Observational Latency, which is the time it takes for the
system to observe enough frames so that there is suffi-
cient information to make a good decision, and

2. Computational Latency, which is the time it takes the sys-
tem to perform the actual computation on the observa-
tions.

It should be noted that a cleverly designed system may
be able to perform the necessary computations in between
observations, effectively masking the computational latency
with the total latency being dependent on only the observa-
tional latency.

In this paper, we focus on observational latency because
reducing this latency requires examining the fundamental
recognition strategy. Once a good strategy is found, it can
often be accelerated with optimizations like classifier cas-
cades (Felzenszwalb et al. 2010; Viola and Jones 2001a;
Viola and Jones 2001b). In Sect. 8, we show how a Gentle-
Boost method (Friedman et al. 2000) leads to reduced com-
putational latency and better recognition performance.

In the worst case, the observational latency would be the
total number of frames it took for a user to perform the ac-
tion. Such a large latency significantly degrades the user’s
interactive experience because the system cannot respond to
an action until after it has completed. In the best case, the
observational latency would be just one frame (at the start
of the action), which is infeasible in practice since actions
are initially very similar. We present a computational mech-
anism for designing classifiers that reduce this latency as
much as possible, while maximizing recognition accuracy.

2.2 Defining and Measuring Observational Latency

Defining and measuring the observational latency of a sys-
tem involves subtle decisions. In previous work, such as
the Action Snippets proposed by Schindler and Van Gool
(2008), and the work of Davis and Tyagi (2006), the system
is tested on sequences where the action is being performed
continuously (no transition from a rest position), ensuring
that every subset of frames shows the action in full progress.

Evaluating data on video where the action is being per-
formed continuously eliminates the ambiguity that occurs as
the user transitions into different actions. Observations that
contain the user beginning an action can be ambiguous as
the user moves through poses that are common to several
different actions. For example, at the start of both climbing
and punching actions, the user’s hand often passes near the
head.

This introduces a different type of latency than those
measured in Davis and Tyagi (2006) or Schindler and Van
Gool (2008). As shown in our experiments, even if it is
still possible to recognize the action from a small number
of frames, many more frames may be required for the user
to assume a distinctive pose that can be reliably recognized.

Our dataset is gathered with each action starting from the
initial rest state, where the participant is standing up straight
with their arms hanging loosely at their sides, ensuring that
the classifier must cope with ambiguous poses at the start
of each action. This at-rest pose also enables us to precisely
measure the observational latency and to minimize the vari-
ation due to the reaction time of the participant. The learn-
ing method described in Sect. 4 is designed to find distinc-
tive poses within each action that can be reliably classified.
The ambiguity issues are compounded by the large number
of actions (16 actions as opposed to the 6 KTH dataset ac-
tions used in (Schindler and Van Gool 2008)) because an
increased number of actions naturally increases the chance
that the different actions appear visually similar.

We argue that measuring latency in this fashion is useful
because it is quite likely that an action recognition system
will have to recognize multiple actions over the course of the
session with the system. In this situation, the lag perceived
by the user depends on how quickly the system can detect
the beginning of the action. In this dataset, this is measured
in terms of the time to move from a rest state to a defini-
tive frame in an action. As mentioned above, this is done to
simplify the data collection process.

In future work, we plan to extend this analysis to data
observing continuous streams of actions.

3 Related Work

Our work is related to general action recognition sys-
tems (Ali and Shah 2010; Li et al. 2010; Shen and Foroosh
2009; Yang et al. 2010). A key, unique aspect of this work
lies in our focus on reducing observational latency. Tradi-
tionally, action recognition systems have focused on recog-
nizing from temporally segmented videos after the action
has been completed. This type of recognition is less applica-
ble for interactive systems as they require real-time recog-
nition. Some systems perform temporal segmentation (Cao
et al. 2010; Yuan et al. 2009), but these systems also assume
that the action has already been recorded in video.

Efforts have been made in the past to try and extract key
pose frames in action video sequences (Cuntoor and Chel-
lappa 2006; Shao and Ji 2009) and use them for the task
of action recognition. Carlsson and Sullivan (2001) present
a recognition system that matches shape information of in-
dividual frames to prototype key frames. Zhao and Elgam-
mal (2008) finds discriminative key frames that are used to
weight features in a bag-of-words classifier. However, more
recent work action recognition has found better results using
simpler bag-of-words representations (Masood et al. 2011),
as discussed in Sect. 6.1.1.

Vahdat et al. (2011) use multiple discriminative frames,
chosen in a separate learning process. In contrast, our ap-

Int J Comput Vis

proach chooses the optimal key frames as part of the learn-
ing process. Cheema et al. (2011) propose to learn weights
for contour-based distinctive key poses and classify using
a weighted voting system. Lv and Nevatia (2007) represent
actions using a series of 2D human poses and perform sil-
houette matching between input and key frames. None of
the above approaches, however, tackle the problem of obser-
vational latency in recognizing actions. Additionally, these
methods rely on manual selection of key frames (Carlsson
and Sullivan 2001) or the availability of accurate silhouette
images (Lv and Nevatia 2007; Cheema et al. 2011).

Hoai and De la Torre’s concurrent work on early event
detection (Hoai and De la Torre 2012) is philosophically
relevant to our research, but approaches the problem from
a different angle. They propose two key modifications to
structured output SVMs in the typical max-margin frame-
work: (1) augmenting the training set using partial events as
positive examples; (2) enforcing monotonicity on detection
scores such that smaller partial events are not classified more
confidently than their encompassing events.

Techniques exist for reducing latency in sequential data,
such as Narasimhan et al. (2006). However, these focus on
reducing the latency associated with decoding hidden state
sequences from observed data, rather than classifying indi-
vidual actions as quickly as possible.

A popular strategy for recognizing gestures, used in Alon
et al. (2009), and Davis and Tyagi (2006), is based on fitting
Hidden Markov Models to different states in the gesture. An
advantage of the system proposed in Alon et al. (2009) is
that it is also able to spot and temporally segment the ac-
tions. However, this segmentation has also not been evalu-
ated in terms of the latency induced.

Pose information has also been incorporated into track-
ing systems, such as Ramanan et al. (2005), which looks for
specific poses while tracking users performing specific ac-
tions, such as walking.

The recent availability of commodity RGB-D sensors,
such as the Microsoft Kinect, has led to increased research
in the application of human pose data (Girshick et al. 2011;
Shotton et al. 2011). While this work has resulted in a signif-
icant improvement in the ability to estimate body pose, ad-
ditional recognition steps are still needed to translate these
poses into actions. Recent work in Raptis et al. (2011) uses
data from the Kinect sensor to recognize dance movements.
While this work presents a powerful representation of skele-
tal data, it was evaluated using around 4 seconds of data per
test sequence. This creates a significant amount of observa-
tional latency in the system.

A truly interactive system should have the ability to tem-
porally segment actions in the stream of observations, such
as the system in Alon et al. (2009) that uses batch-style pro-
cessing on a complete video to spot gestures. The structure
of the dataset used here, with one action per video, leads us

to focus on just spotting the beginning of the action. This is
discussed in more detail in Sect. 7.

4 Finding Poses with Multiple Instance Learning

To minimize the observational latency at the outset, the clas-
sifier must be designed to require as few observations as pos-
sible, similar to Schindler and Van Gool (2008). Using the
minimum number of frames possible, the system is able to
focus on the observational latency inherent in human motion
and pose, as discussed in Sect. 2.2.

To minimize the number of observations necessary, this
classifier classifies actions based on pose and motion infor-
mation available from the current, the frame captured 10
frames previously, and the frame captured 30 frames pre-
viously, as discussed in Sect. 5. The underlying idea behind
the classifier is that the action can be reliably recognized
when the user assumes a distinctive pose that characterizes
the action. As demonstrated in Sect. 6.2, this strategy per-
form very well.

The virtue of automatically identifying a distinctive
“canonical” pose for each action is that this makes it pos-
sible to ignore confusing intermediate poses that make clas-
sifying similar actions difficult. For example, as shown in
Fig. 1, the “climb up” and “leap” actions have a similar me-
dian pose as both involve raising the arms. However, the
learning process has automatically found canonical poses
for each action that look very different. When the system
observes the canonical pose, it can unambiguously classify
the action. This is effective because it enables the system
to ignore ambiguous data leading up to the canonical pose
without fixating on ambiguous poses that could potentially
be misclassified.

4.1 Classifying Videos by Examining Individual Frames

In our dataset, discussed in detail in Sect. 5, each video
consists of one individual performing one action only once.
These videos are labeled based on the similarity of a frame
in the sequence to a canonical pose associated with each ac-
tion. Thus, the labeling process can be thought of as labeling
a bag of frames according to the instances inside that bag.

Formally, the classification begins with a set of weight
vectors, θ1, . . . , θNA

, where NA is the number of actions.
The first step in classifying a video is to automatically find
the frame for each action class that exhibits a canonical pose
most similar to that class. Formally, we denote this as a max-
response for class c:

rc(x) = max
f ∈F

xf · θc (1)

where F denotes the set of all frames in the bag and xf

represents the vector of features for frame f .

Int J Comput Vis

The probability that the label l of a video should take the
correct label T can then be computed using the soft-max
function, as in logistic regression:

P [l = T |x] = exp(rT (x))

1 + ∑
c exp(rc(x)))

= exp(maxf ∈F xf · θT)

1 + ∑
c exp(maxf ∈F xf · θc)

. (2)

Adding a 1 to the denominator of Eq. (2) is different than
the typical soft-max function. In this formulation, the addi-
tion of 1 implicitly models a null action that always has a
response of 0. In practice, this makes it possible for the clas-
sifier to better manage uncertainty as it classifies an action
as null until the user assumes a pose that makes the current
action clear.

As mentioned above, this formulation is similar to mul-
tiple instance learning because the video, or bag of frames,
is classified according to how one of the frames in that bag
is classified. The use of the max operator is also somewhat
similar to Felzenszwalb et al.’s latent SVM formulation for
object detection in images (Felzenszwalb et al. 2010).

4.2 Smooth Approximation

While logistic regression models are typically trained using
gradient-based optimization, the introduction of the max op-
erator in Eq. (2) makes the training criterion non-smooth.
This can be overcome by using the approximation to the
maximum of a set of values V = v1, . . . , vN as

max(v1, v2, . . . , vN) ≈ log
(
ev1 + ev2 + · · · + evN

)
. (3)

Incorporating this approximation into Eq. 1 leads to the fol-
lowing expression for computing the probability of a partic-
ular class:

P [l = T |x] = exp(log(
∑

f ∈F exp(xf · θT)))

1 + ∑
c exp(log(

∑
f ∈F exp(xf · θc)))

=
∑

f ∈F exp(xf · θT)

1 + ∑
c

∑
f ∈F exp(xf · θc)

. (4)

As an aside, we note that in Eq. (4), the sharpness of the
max approximation could be tuned using a scaling parame-
ter as: max(v1, . . . , vN) ≈ log(ekv1 + · · · + ekvN). However,
such a scaling is subsumed in the weights, θ , during opti-
mization and apart from changing the local minimum that
is found, has no impact on the system. We experimentally
verified this finding using a range of k from 1 to 100. Thus,
we employ a unit scaling, k = 1.

Given training examples x1, . . . ,xNT
and training labels

t1, . . . , tNT
, the weights θ1, . . . , θNA

for the NA actions can
be found by optimizing the log-loss criterion created by tak-
ing the log of Eq. (4). In our implementation, we use the

non-linear conjugate gradient algorithm to optimize the log-
loss. To increase the generalization performance of the sys-
tem, a regularization term, R(θi) is summed over all entries
in θ and added to the final optimization criterion. To encour-
age sparsity, we use a Lorentzian term:

R(θi) = α log
(
1 + βθ2

i

)
, (5)

where α and β are chosen to be 1/4 and 1 through cross-
validation.

Replacing the max with the soft approximation causes
the system to consider all of the observed frames when com-
puting the label, though the greatest weight is assigned to the
frames with the highest response.

In our experiments, the weights are initialized randomly
with the initial weights drawn from a zero-mean, unit-
variance Gaussian distribution.

5 Dataset and Features

Our dataset was gathered from 16 individuals (13 males and
3 females, all ranging between ages 20 to 35) using a Mi-
crosoft Kinect sensor and the OpenNI platform to estimate
skeletons. Each individual performs all 16 actions 5 times
for a total of 1280 action samples.2 In each frame, the 3-
dimensional coordinates of 15 joints are available. Orienta-
tion and binary confidence values are also available for each
joint, but are not used in this work. It may prove useful to
make use of confidence values in future algorithms to aid the
selection of canonical poses, however, in practice we have
found that our system is not particularly sensitive to noisy
joint data. By allowing our system to learn the weights of
each feature, it can automatically reduce the importance of
features with high amounts of noise or low information gain.

When gathering the data for each action, we asked the in-
dividuals to stand in a relaxed posture with their arms hang-
ing down loosely at their sides. They were then told the ac-
tion they were to perform and if requested, given a demon-
stration of the action. A countdown was given at the end of
which recording began and the individual performed the ac-
tion. The recording was manually stopped upon completion
of the action. Gathering the data in this fashion simulates
a gaming scenario where the user performs a variety of ac-
tions, such as punches and kicks, and returns to a resting
pose between actions.

We chose a set of features that can be computed quickly
and easily from a set of frames. For each given frame of data,
we construct a feature set from information in three frames:
the current frame xt , the frame captured 10 frames previ-
ously, xt−10, and the frame captured 30 frames previously,

2The dataset has been made publicly available at http://www.cs.
ucf.edu/~smasood/datasets/UCFKinect.zip.

http://www.cs.ucf.edu/~smasood/datasets/UCFKinect.zip
http://www.cs.ucf.edu/~smasood/datasets/UCFKinect.zip

Int J Comput Vis

xt−30. While including data from xt−10 and xt−30 makes our
features not precisely a “pose”, we consider it a more intu-
itive term, as we do not use fine-grained sequence data, nor
do we delay classification by looking further ahead in the
data stream.

The first set of features is computed by calculating the
Euclidean distance between every pair of points in the xt .
From the skeletons computed by the OpenNI software, the
15 joint positions are used to calculate 105 distances.

To capture motion information, the Euclidean distance
for all joint location pairs between frame xt and frame xt−10

are computed, resulting in an additional 225 distance pairs.
To capture the overall dynamics of body movement, sim-

ilar distances are computed between frame xt and a generic
skeleton that simulates a typical pose of a person at rest.
The features are computed by translating the center-of-mass
of the generic skeleton to the same location of the center
of mass of the user’s skeleton at frame xt−30. In the case
that previous frames are not available, such as when t is less
than 30, center of mass of the first frame is used as a sub-
stitute. The feature values are the distance between every
possible pairs of points in the user’s skeleton at frame t and
the generic skeleton translated to the user’s center-of-mass at
frame t − 30. This brings the total number of distance pairs
up to 555. The generic skeleton is computed by averaging
the skeleton in the first frame of the training set. Outside of
translation, we did not find it necessary to scale or warp the
generic skeleton to match the user’s pose.

Each feature vector computed at a particular time instant
is independently normalized by dividing the vector by the
standard deviation of the vector.

The time required for training the system was signifi-
cantly reduced by transforming these features into a binary,
cluster-based representation. Each individual feature value
was clustered into one of 5 groups via k-means and replaced
with a 5 bit vector containing a 1 at the cluster index of the
value, and a 0 for all other bits. Each of these vectors are
concatenated to create a new discretized binary feature vec-
tor. We add one additional bias term which always has the
value 1. The final feature size is thus 555 × 5 + 1 = 2776.
This transformation leads to a small increase in recognition
performance and a significant reduction in training time.

6 Experiments on Temporally Segmented Actions

First, the classifiers are trained on data where the temporal
segmentation of actions is available. The goal of the train-
ing process is to find the weight vector θ such that a classi-
fier that computes class probabilities using Eq. (4) classifies
each video as accurately as possible. This is done by auto-
matically finding the frame with the discriminative canoni-
cal pose for each action class. For each classifier, this pro-
cess involves the following steps:

1. Processing the frames in the video to create a bag of
feature vectors. A feature vector is computed for each
frame after the initial frame in the video. As described
in Sect. 5, the vector for a particular frame is computed
from the frame, the preceding frame, and the first frame
in the video.

2. Learn the weight parameters θ1, . . . , θNa according to the
method described in Sect. 4.1.

3. For each action class, c ∈ {1, . . . ,NA}, find the feature
vector xf ∗

c
such that xf ∗

c
· θc has the highest value. At a

high-level, this is equivalent to finding the frame in each
video that most resembles the action class c. Notice that
f ∗

c is unique for each class.
4. Label the video with class c∗, where

c∗ = arg max
c

xf ∗
c

· θc. (6)

For evaluation, we used a set of data gathered from 16
people (as discussed in Sect. 5). All of our experiments are
implemented using 4-fold cross-validation.

Figure 1 shows visualizations of the best poses learned
by the classifier. For each video in the training set, we au-
tomatically found the frame corresponding to f ∗

c for the ac-
tion contained in the video. The skeleton on the left of each
panel in Fig. 1 shows the skeleton created by taking the me-
dian of each joint location across the best frames from each
action video. The skeletons on the right of each panel show
examples of the best frame skeletons. As can be seen in this
figure, these skeletons are visually intuitive.

6.1 Baseline Models

Our experiments employ two different models for baseline
comparisons: The first is Bag-of-Words (BoW), chosen for
its popularity and simplicity of implementation; the second
is a Linear Chain Conditional Random Field (CRF), which
is a natural choice for a model that can exploit the temporal
sequence of hidden state information.

For both these baseline approaches we use the same fea-
ture size and training procedure as our proposed method. For
the CRF baseline we employ the same regularization term as
in Eq. (5).

6.1.1 Bag of Words Model

Bag-of-Words (BoW) is a straightforward approach that is
known to consistently perform well on a wide variety of ac-
tion datasets, such as Liu and Shah (2008). While Zhao and
Elgammal (2008) propose extensions for the BoW model
that use key frames, we use the original BoW model be-
cause recent work (Masood et al. 2011) has shown that in
direct comparisons on KTH, the original BoW outperforms
the variant proposed in Zhao and Elgammal (2008).

Int J Comput Vis

In our baseline, the BoW employs the same distances
described in Sect. 5, discretized to 1000 clusters using
k-means. Each video is represented by a histogram describ-
ing the frequency of each cluster center. Histograms are nor-
malized to avoid bias based on the length of the video. Clas-
sification is performed using an SVM with histogram inter-
section kernel.

6.1.2 Linear Chain CRF Model

The Conditional Random Field (CRF) model (Lafferty et al.
2001) has demonstrated strong performance in classifying
time sequence data across several application domains and is
thus a natural choice for a strong second baseline. The CRF-
based classification strategy is similar to Eqs. (2) and (4).
However, in this case, the probability is computed using a
function Ck(y;x) that expresses the cost of a sequence of
hidden states, expressed in the vector y, given the observa-
tion x.

Following Sect. 4.2, the probability of a particular class
is expressed as

p[l = T |x] = exp{miny(−CT (y;x))}
∑

k exp{miny(−Ck(y;x))} (7)

≈ exp{− log
∑

y exp(CT (y;x))}
exp{− log

∑
k

∑
y exp(Ck(y;x))} . (8)

The function Ck(y;x) is constructed to be a typical chain-
structured CRF model, with pairwise Potts model poten-
tials (Boykov et al. 2001) and the terms relating the obser-
vations to states being linear functions of the observations.

The primary difference between the CRF model and our
approach is that the CRF model attempts to model the en-
tire sequences of body poses, while our approach seeks the
most informative poses. While it could be expected that the
more detailed CRF model could lead to better recognition
performance, our results clearly demonstrate the advantages
of focusing on a single, reliably occurring, highly discrimi-
native pose.

6.2 Results for Temporally Segmented Actions

To understand the time required for humans to make eas-
ily identifiable movements or poses, both the proposed sys-
tem and the baseline BoW and CRF systems were trained
and evaluated on videos of varying lengths. From the base
dataset, new datasets were created by varying a parameter
termed maxFrames. Each new dataset was created by se-
lecting only the first maxFrames frames from the video. For
videos shorter than maxFrames, the entire video was used.

Varying maxFrames makes it possible to measure how
much information is available in a specific time span. It
should be noted that our classifier operates by finding the

Fig. 2 Accuracy vs. Bag of Words and CRF over videos truncated
at varying maximum lengths. The pose-based classifier proposed here
achieves higher accuracy with fewer observations

Table 2 A tabular representation of the data from Fig. 2. Note that our
proposed method outperforms baselines even when they have access to
more frames of pose information

Frames

10 15 20 25 30 40 60

Ours 13.91 36.95 64.77 81.56 90.55 95.16 95.94

CRF 14.53 25.46 46.88 67.27 80.70 91.41 94.29

BoW 10.70 21.17 43.52 67.58 83.20 91.88 94.06

best feature vector in the first maxFrames frames, but that
this vector is itself only based on three frames. On the other
hand, the BoW and CRF classifiers use the feature vectors
from all maxFrames frames.

As shown in Fig. 2, our classifier clearly outperforms
both BoW and CRF classifiers. Each point on a curve in this
figure shows the accuracy achieved by the classifier given
only the number of frames shown on the horizontal axis.
Thus, given only 30 frames of input, our system achieves
90.6 % accuracy, while BoW and CRF classifiers are only
able to achieve accuracy rates of 83.2 % and 80.7 %, re-
spectively. Table 2 shows numerical results at several points
along the curves in Fig. 2. As these curves show, all of the
systems perform poorly given a small number of frames
because users have not had enough time to form distinc-
tive poses. Likewise, all of the methods perform similarly
well when a large number of frames can be observed. How-
ever, in the important middle range, our approach achieves
a much higher accuracy given the same number of frames.
This shows that our approach improves accuracy for a given
latency requirement and can recognize actions at the desired
accuracy with a much lower latency.

Int J Comput Vis

Fig. 3 Confusion matrix for
full video temporally segmented
classification. Results shown are
from uncropped action data.
Overall accuracy achieved is
95.94 %

Figure 3 shows recognition results of our method with
respect to each action in the dataset. We can observe that
the twistleft and twistright actions are confused with each
other as well as the vault action. Since our feature set is the
difference between skeleton joint positions, the limb config-
urations in twistleft and twistright are found to be similar to
arm and leg positions in each other, as well as vault.

This result validates our strategy of looking for “canon-
ical” poses instead of trying to aggregate pose information
over time. The BoW and CRF classifiers can be thought of
as trying to aggregate weaker pose information over time
to get an estimate of the action, but these classifiers do not
outperform our method at any frame window size.

Figure 2 also shows that with fewer than 15 frames each
classifier performed poorly, but with more than 15 frames
the performance of our system rises appreciably. This can
be understood by considering the range of movements ob-
served in the beginning frames of the actions. Figure 4 de-
picts the variation in feature vectors over time. Each point
on the graph is created by computing the standard deviation
of each feature across all feature vectors at that time. It is
clear that the variation in pose and movement at frame 10
is very similar to that at frame 2, indicating that the users
have not had the time to assume poses or movement that are
significantly different. The peak in variation occurs around
frame 30, but our classifier does benefit from having more
frames available because these extra frames give more op-
portunity for the user to assume an easily identifiable pose.
By frame 40, our system performs as well as when trained
on the full video. The drop-off for larger frames is explained
by the low number of videos that have such a large number
of frames.

Fig. 4 The standard deviation aggregated over all features per frame.
On average, the most informative frame is 30 frames into the action.
Our online classifier can accurately recognize actions an average of 10
frames before this peak

Figure 2 also shows that the data gathering procedure,
where the user begins from a relaxed pose, does not simplify
the recognition task. The improvement in classification ac-
curacy as more frames become available indicates that the
system prefers to use later frames; the improved accuracy
comes directly from the benefits of observing the distinctive
features that are visible only in these later frames.

6.3 Benefits of Soft Approximation

The choice of the frame used for classifying the action is
treated as a latent variable during the training process, much
like the location of parts in the object detection model in

Int J Comput Vis

Felzenszwalb et al. (2010). In this work, we use a soft ap-
proximation of the max operator during the training process
while the training system in Felzenszwalb et al. (2010) uses
a coordinate descent optimization that involves two alternat-
ing steps. The first step fixes the location of the parts. This
results in a standard margin-based criterion that is optimized
using sub-gradient descent.

To measure the influence of the soft approach taken in
Sect. 4, we also implemented a coordinate descent approach,
similar to Felzenszwalb et al. (2010), with two steps. In the
first step, the frames are selected to calculate the score of the
different action classifications. For a task with 16 different
actions, this means that 16 different frames are chosen for
each training video. The frame chosen for a particular action
is the frame with the highest score.

Once these frames are fixed, the parameters can be opti-
mized with a negative log-loss criterion similar to Eq. (4).
As mentioned above, this criterion is based on one frame
per action category. The indices of the frames chosen for
each action will be denoted as f1, . . . , fNA

, where NA is the
number of actions. With these frames, the negative log-loss
learning criterion becomes

L = −x · θT + log

(

1 +
∑

c

exp(xfc · θc)

)

. (9)

This can be optimized with standard minimization tech-
niques. In our implementation, this second step was imple-
mented with a fixed number of iterations of non-linear con-
jugate gradient descent. We then return to step 1, taking the
learned parameters from the second step, and reselect the
maximum scoring frames. This process iterates until the sum
of squared differences of the learned parameters converge.

To measure the effect of the soft approximation, we per-
formed the same experiment described by Sect. 6.2, with
whole videos and four-fold cross-validation. We found the
behavior of the coordinate descent approach, with a hard
choice of frames, to be sensitive to the initialization of the
optimization. As mentioned at the end of Sect. 4.2, a ran-
dom initialization is used to learn the weights using the soft
approximation. If coordinate descent optimization is started
with the same type of random initialization, then the average
classification accuracy was 73.1 %. This compares poorly
with the 95.94 % accuracy achieved using the soft approxi-
mation.

However, if we take advantage of the observation that
later frames in the video tend to be more indicative, the ac-
curacy can be significantly improved. In a second experi-
ment, we initialized the coordinate descent optimization by
fixing the frame used for each action to the 35th frame, or
final frame for short videos. This frame was chosen because,
on average, this frame was one of the most distinct between
different actions. With this initialization, the classification

accuracy increases significantly to 92.7 %, which is still
slightly worse than the accuracy of our soft approach.

Our conclusion from this experiment is that using a co-
ordinate descent approach, similar to Felzenszwalb et al.
(2010), can perform similarly to the soft approach used in
this paper, but is much more sensitive to the initialization
used.

7 Experiments with Online Detection of Actions

While the temporally segmented results are useful for un-
derstanding baseline performance, in real-world scenarios,
the system must identify actions in real-time. We focus on a
particular sub-problem of the general online action spotting
task by focusing on spotting the beginning of each action.
This is in line with our goal of characterizing and reducing
the observational latency of the recognition system.

The spotting is implemented using the probabilities com-
puted with the soft-max probability, similar to Eq. (4). The
weights, θ , are the identical weights learned for the experi-
ments in Sect. 6. The key difference is that they are applied
to every frame.

An action is spotted by computing the probability for
each class on each frame in the video and comparing each
probability to a threshold T , which is optimized on the train-
ing set by linear search. Once any class probability exceeds
T , that probability is used to classify the action in the whole
video. This simulates the task of detecting actions from a
stream of real-time sensor input, as the classifier does not
know a priori when the action begins or ends.

This process can be thought of as scanning the video until
one of the classifiers fires strongly enough, then using that
result to classify the whole video. If no probability exceeds
T , the video is considered a missed detection and an error.

7.1 Modifying the Learning Criterion to Improve Online
Detection Performance

A weakness of the approach described in the previous sec-
tion is that the classification weights have been trained for
the situation where the classifier can view all of the frames
to make a decision. This is quite different from the online
detection task described above and the weights may not be
suitably adapted to this different task.

To better adapt the weights, the learning criterion can be
modified to reflect the online detection task more purpose-
fully. This can be done by introducing a new loss Lm that is
basically identical to the original training loss, but is com-
puted on videos that have been cropped to m frames, similar
to the procedure in Sect. 6.2 with maxFrames. This is com-
bined with the original loss to create the learning criterion

Int J Comput Vis

Fig. 5 Latency compared with accuracy, evaluated on the testing set,
for different values of γ . The optimal threshold value T was deter-
mined by linear search to be 0.9999. Action accuracy is maximal at the
26th frame on average. As γ increases, latency is reduced at the cost
of decreased accuracy

for online detection, denoted as LOnline(·),
LOnline(θ) = LFull(θ) + γ

∑

m∈M

mLM(θ) + R(θ), (10)

where R(θ) is the regularization term from Eq. (5).
In this criterion, the loss computed over smaller time

scales is added to the overall loss thus providing an incen-
tive for detecting the action in as few frames as possible. The
set M contains the time scales used in the training process.
In our experiments, we use the set M = {10,15,20}. The
term γ · m is a scaling factor. Incorporating m into the scal-
ing factor places more weight on correctly classifying longer
timescales. This is to avoid over-fitting noise in videos with
fewer frames.

7.2 Measuring Latency and Accuracy

It is possible to measure the observational latency of the sys-
tem directly because the system waits until it is confident
enough to make a classification. Figure 5 shows the relation-
ship between the observational latency and system accuracy
on the testing set for different values of γ in Eq. (10).3

Figure 5 shows that as γ rises, the accuracy of the online
detection system decreases along with the latency. This indi-
cates that the learning criterion in Eq. (10) provides a param-
eter to tune the classifier between accuracy and latency. At
the optimal γ , the system has an accuracy of 85.78 %. This
compares well with the result from Sect. 6.2 as this task is

3The optimal value of the threshold T was found for each value of γ

using the training set.

Fig. 6 Comparison of frame of highest response from full video TS
classifier with frame of classification from OL classifier. The value of
γ for the results shown is 0. The error bars depict the std. deviation of
the frame of classification. Recall that the TS classifier must look at the
entire pre-segmented action to classify, so its frames correspond to the
frames with the highest probability of being the correct action. The OL
classifier frame is the earliest point that the probability of the correct
action passes the threshold

much harder. It should also be pointed out that the online de-
tector still outperforms the baseline classifiers, even though
they do not have the burden of detecting the action in the
stream. The classifier is able to achieve this accuracy by the
26th frame of the action on average, even though the stan-
dard deviation over all features does not peak until after the
30th frame.

The reason for the drop in classification accuracy can be
seen in Fig. 6, which compares the median frame, per ac-
tion class, chosen by the classifier for temporally segmented
videos against that chosen by the online detection system.
As can be seen in this figure, the online detection system typ-
ically chooses a frame earlier than would be chosen if the en-
tire video could be viewed prior to classification. However,
for a 66 % average reduction in classification time, accuracy
only drops approximately 8 %.

Figure 7 shows the confusion matrix in the online de-
tection system. A column has been added for those actions
where video has been mistakenly labeled as having no ac-
tion.

7.3 Reducing Latency

Figure 5 also shows that this learning criterion can reduce
the latency significantly, but that comes at the cost of signif-
icant reductions in accuracy. As γ increases, temporal seg-
mentation classification accuracy decreases gradually. The

Int J Comput Vis

Fig. 7 Confusion matrix for
online classification with
optimal γ . Due to the added
constraint of recognizing actions
as soon as possible, we see more
confusion between the actions.
However, by sacrificing a small
drop of approximately 8 % in
recognition performance (from
95.94 % in Fig. 3 to 85.78 %
above), we are able to achieve a
significant drop (approx 66 %)
in classification latency

online classifier also degrades in performance gradually un-
til the classifier begins firing too early, after which accuracy
drops off sharply.

From these results, the accuracy and latency of the sys-
tem appear strongly correlated. When γ is small, accuracy is
high and the system classifies only when it is highly proba-
ble to be correct. With large γ , too much emphasis is placed
on early classification. Since the amount of variance in the
early frames of the data is negligible for accurate classifica-
tion, we see a drop in both accuracy and latency.

8 Reducing Computational Latency

While our focus is on reducing the observational latency,
real-time applications may also face issues with computa-
tional latency. To improve this type of latency, we use a
boosting approach to find a subset of features that perform as
well. This makes it possible to greatly improve the efficiency
of our system with negligible reduction in recognition per-
formance.

For selecting the best features, we used a GentleBoost
(Friedman et al. 2000) technique to greedily select a set of
features. This algorithm operates through a stage-wise min-
imization of the negative log-likelihood of Eq. (4). At each
iteration, the system chooses a feature and parameter value
by minimizing a quadratic approximation to the criterion.

When testing our algorithm, we evaluated the system at
multiples of 100 features up to a maximum of 300. Table 3
shows our results achieved on temporally segmented videos.
We can see that this approach is able to achieve an overall

Table 3 GentleBoost recognition performance for different number of
best selected features against our temporally segmented (TS) results.
By using only 300 best features out of a total of 2776, we can achieve
recognition performance within 2 % of our best temporally segmented
result

GentleBoost Features (TS) All Features (TS)

Features 100 200 300 2776

Accuracy 92.11 % 93.52 % 94.06 % 95.94 %

Table 4 GentleBoost vs. All Features for online (OL) classification.
We see the same trend as observed for the temporally segmented videos
in Table 3. For the best possible value of γ , the boosted feature online
classification system is within 1.7 % of our original online result

GentleBoost Features (OL) All Features (OL)

γ = 1e–5 83.08 % 85.78 %

recognition accuracy of 94.06 % by only using less than one-
third of the original features. This is negligibly lower than
our original best result of 95.94 % (as shown in Table 3) but
with greatly improved efficiency. The same trend is observed
for online classification for the best possible γ value (refer
to Table 4).

8.1 Examining the Boosted Features

When examining the features chosen by the boosting algo-
rithm, we can gain insight as to which features are more
useful for classification. As described in Sect. 5, the features
for each frame are constructed from pairwise distances be-

Int J Comput Vis

tween joints in the current, the frame captured 10 frames
previously and the frame captured 30 frames previously. Of
the 300 features selected by the boosting algorithm, 18 con-
tained two joints from the current frame, 88 contained a
joint from the current frame paired with a joint from the
frame captured 10 frames previously, and 194 contained
joints paired between the current frame and the frame cap-
tured 30 frames previously. As nearly two-thirds of the fea-
tures were selected from the latter category, we can infer that
pairwise distances between the current frame and frame cap-
tured 30 frames previously yield the most useful information
toward classification. In other words, our most informative
features are those that show how different the user’s pose
is from their “at rest” reference pose. On the other hand,
the least useful features simply measure distances between
joints within a single frame.

Now that we know which frames are the most interest-
ing, we should examine which joints are the most informa-
tive. Figure 8 shows the occurrence of each joint in the 300
boosted features. The right and left hands are the most com-
mon, with the right hand in the lead, most likely owing to
the right-handedness of the majority of the training subjects.
Less articulate and less used joints, such as the head, torso,
and feet, are much less commonly used.

By eliminating less important features, we can reduce
the computational latency commonly associated with large
sparse feature vectors such as the one used in our classi-
fication system. This is especially useful in systems where
classification must be done on inexpensive commodity hard-
ware alongside other computational tasks, such as in PCs
and game consoles. Further reduction in computational la-
tency can be achieved by tracking fewer joints, especially
from the central and lower body regions, as these joints were
less commonly selected by the boosting algorithm and are
likely to be less informative.

9 Managing Accuracy and Latency by Reducing
Possible Actions

While the focus of this paper is on minimizing latency for a
fixed set of actions, some applications could allow for flexi-
bility in the specification of which actions must be detected.
To study the effect of the choice of actions, we measured
how accuracy and latency changed as we iteratively elimi-
nated actions. The set of actions were reduced by greedily
removing an action from the set of actions one at a time per
value of γ . After training the system across the same set of
values of γ used in Fig. 5, the action that was most often
confused with other actions was removed. The action sets
chosen are shown in Table 5. In this problem, different val-
ues of γ affect the actions chosen because higher values of
γ encourage the use of actions that can be recognized early.

Fig. 8 List of joints by occurrence in the 300 feature set found by
boosting. Notice that the right and left hands are the two most com-
monly used joints. Less articulate joints, such as the head and torso,
as well as less used joints, such as the left and right foot, are used less
often

Fig. 9 These curves show how the accuracy and latency in recognition
changes as actions are eliminated. As actions that are difficult to rec-
ognize are greedily eliminated, the recognition rate at different laten-
cies rises. The accuracies shown are the maximum over the evaluated
threshold values

Figure 9 shows curves representing achievable accuracy
and latency results for problems with action sets of differ-
ent sizes. Each of these curves was created by first training
our system across the sets created by different values of γ .
Using the online classification strategy described in Sect. 7,
we then evaluated the system across variety of thresholds,
T in Sect. 7. Figure 9 shows the best accuracies achieved
for different latency values. All accuracies are averaged in

Int J Comput Vis

Table 5 This figure shows the action sets chosen per γ at 16, 12, 8,
and 4 actions. Note that for each given γ , at 8 actions, the action set
includes the actions from both the 8 and 4 action rows. Likewise, the

12 action set includes the actions from the 12, 8, and 4 action rows,
and 16 actions includes the entire column

γ 102 101 100 10−1 10−2 10−3 10−4 10−5 0

4 actions balance balance balance balance balance balance balance duck balance

hop hop climbladder climbup leap leap leap leap duck

stepleft stepleft stepleft stepfront stepfront stepfront run run leap

stepright stepright stepright stepright stepright stepright stepfront stepfront run

8 actions climbup climbup climbup duck duck duck duck balance climbup

kick kick leap kick run kick stepback climbup stepback

twistright twistright twistright stepback stepback stepback stepleft stepleft stepfront

vault vault vault stepleft stepleft stepleft stepright stepright stepright

12 actions duck duck hop hop climbladder climbup climbup hop hop

leap leap run leap climbup hop hop kick kick

stepback stepback stepback twistright hop run kick punch punch

twistleft twistleft twistleft vault kick vault vault stepback stepleft

16 actions climbladder climbladder duck climbladder punch climbladder climbladder climbladder climbladder

punch punch kick punch twistleft punch punch twistleft twistleft

run run punch run twistright twistleft twistleft twistright twistright

stepfront stepfront stepfront twistleft vault twistright twistright vault vault

the same four-fold cross-validation framework described in
Sect. 6.

As Fig. 9 shows, reducing the number of actions gener-
ally increases accuracy. The difference is most significant
for lower levels of latency because less information is avail-
able to the classifier, making the reduction in the number
of possible actions more beneficial. Once only four actions
remain, recognition rates rise rapidly, though it should be
remembered that these four actions are chosen to make dis-
crimination easy. These actions tend to be easier for the clas-
sifier to distinguish from one another, such as balance and
step right.

10 Accuracy Results on Additional Datasets

We also validated our system in terms of recognition ac-
curacy using two additional datasets—the MSR Action3D
dataset from Li et al. (2010) and the MSRC-12 Kinect Ges-
ture dataset (Fothergill et al. 2012). Both of these datasets
were gathered with Kinect or Kinect-like devices. Similar to
our work, the MSRC-12 dataset chooses gestures inspired
by interactive games. The MSR Action3D dataset predates
the release of the Kinect device and focuses on a mix of
sports-based and interaction-based gestures.

10.1 Results on MSRC-12 Kinect Gesture Dataset

The MSRC-12 Kinect Gesture dataset was constructed to
both measure the performance of recognition systems and

evaluate various methods of teaching human subjects how to
perform the different actions (Fothergill et al. 2012). Thus,
the dataset is partitioned along different methods of instruc-
tion, such as text-only or text and video. Similar to our work,
this dataset is designed to make the consideration of latency
possible. An action point is identified in the data stream that
captures a unique pose, similar to the idea of the canonical
pose proposed in this work. However, latency is considered
differently. Rather than directly minimizing latency, the ex-
periments in Fothergill et al. (2012) measure whether the
system can correctly recognize the gesture within a window
333 milliseconds before and after the gesture’s action point.

To replicate the experimental setup described in Sect. 6,
we used the action point to divide the videos in this dataset
into temporally-segmented examples of each action. The
different instruction types were ignored and videos from
all instruction types were combined together. Following the
protocol in Sect. 6, our system achieved a recognition accu-
racy of 88.7 %. This is similar to the performance on our
dataset and shows that our method can be applied to a wide
variety of gestures.

We followed the protocol from Sect. 6 to balance limita-
tions in both our methodology and the protocol in Fothergill
et al. (2012). While the experiments in Fothergill et al.
(2012) can only measure detections within a fixed window
of latency, our experimental method can directly measure la-
tency in recognition. The disadvantage of this methodology
is that focusing on time-segmented examples can make the
system prone to false-firing in streams of data.

Int J Comput Vis

Table 6 This table compares the recognition achieved with our system
against previous work on the MSR Action3D dataset from Li et al.
(2010). Our approach outperforms a number of previous approaches in
terms of accuracy. The methods that outperform our system require that
the complete action be viewed before recognition is possible. As we
have argued earlier, low-latency, interactive recognition is impossible
if the whole gesture must be seen before it can be recognized

Method Accuracy
(%)

Recurrent Neural Network (Martens and Sutskever 2011) 42.5 %

Dynamic Temporal Warping (Müller and Röder 2006) 54 %

Hidden Markov Model (Lv and Nevatia 2006) 63 %

Our Approach 65.7 %

Action Graph on Bag of 3D Points (Li et al. 2010) 74.7 %

Actionlet Ensemble (Wang et al. 2012) 88.2 %

10.2 Results of MSR Action3D Dataset

The MSR Action3D dataset from Li et al. (2010) consists
of a set of temporally segmented actions, so we followed
the experimental methods outlined in Li et al. (2010). Ta-
ble 6 compares the recognition accuracy produced using our
method against previous systems. As this table shows, our
method outperforms a number of time-series based meth-
ods, including dynamic time warping and a Hidden Markov
Model. Our approach is outperformed by two recently pro-
posed methods, but this result should be viewed in the con-
text of the accuracy/latency trade-off. The two approaches
that outperform our approach require that the entire action
be viewed before recognition can occur.

Insight into our system’s performance can be gained by
examining recognition accuracy for specific action classes.
Table 7 shows the accuracy on the five worst-performing ac-
tions and five best-performing classes. Our system is able to
easily distinguish between actions that have different body
poses, such as a golf swing and wave motions. However, our
method has difficulty distinguishing between actions that
have a similar body pose and differ primarily in motion, such
as a hammering motion and a high throwing motion.

Our system has a difficult time distinguishing between
the three types of Draw actions in the dataset: the Draw X,
Draw Circle, and Draw Tick actions. These actions in partic-
ular do not have a single canonical pose, instead needing a
temporally aligned series of poses for classification. Due to
the temporal nature of these actions, the entire action must
be observed before classification is possible, and thus our
low-latency driven approach is not as appropriate. Further
study is needed to determine precisely how important low
latency is in these types of abstract actions.

Table 7 This table shows the accuracy of the five least-recognized
actions in the MSR Action3D dataset (Li et al. 2010) and the five best-
recognized actions. Our system performs the worst when the gestures
have similar body poses and the motion between gestures is the primary
differentiating factor. However, when the actions have different body
poses, our system performs quite well

Action Accuracy Action Accuracy

Hammer 0 % Hand Clap 100 %

Hand Catch 0 % Two Hand Wave 100 %

High Throw 14.3 % Forward Kick 100 %

Draw Circle 20 % Golf Swing 100 %

Draw X 35.7 % Tennis Serve 100 %

11 Conclusions

Human motion is fast becoming a new paradigm in user in-
terfaces, particularly in entertainment. These systems need
to be accurate and have low latency if they are to become
widespread. We have proposed a novel system for online
action classification that addresses both of these concerns.

Our proposed method converts skeleton data from the
Microsoft Kinect to a feature vector comprised of clustered
pairwise joint distances between the current, frame captured
10 frames previously, and frame captured 30 frames previ-
ously in an action video. In this sense our classifier identifies
actions based on canonical body poses. We evaluated a tem-
porally segmented version of the classifier against baseline
Bag of Words and Conditional Random Field implementa-
tions and found our model to be superior, yielding 95.94 %
accuracy.

We then adapted our model to an online variant, and eval-
uated two schemes to drive down the latency due to classifi-
cation. We found that we were capable of classifying a large
set of actions with a high degree of accuracy and low latency.
We additionally introduced a parameter which can be used
to fine-tune the trade off between high accuracy and low la-
tency. With this variant we achieved an overall accuracy of
85.78 %.

To address computational latency, we used GentleBoost
to select a reduced set of best features. We then examined
this set of features and found that the most informative joints
were the upper extremities, and the most informative joint
pairwise distances were between the current and the generic
reference pose. Using these boosted features, we were able
to achieve greater efficiency with a negligible drop in recog-
nition performance (94.06 % and 83.08 % for temporally
segmented and online classification, respectively).

We further explored the trade-off between accuracy and
latency in domains where the number of actions being clas-
sified is flexible. We then demonstrated that as the num-
ber of actions being classified is reduced, higher accuracy
is achievable at lower latency.

Int J Comput Vis

Finally, we evaluated our approach on two additional
datasets. We achieve high accuracy on the MSRC-12 dataset,
and most of the MSR Action3D dataset, and identify a class
of actions which are not appropriate for canonical pose tech-
niques.

Acknowledgements Marshall F. Tappen, Syed Z. Masood and Chris
Ellis were supported by NSF grants IIS-0905387 and IIS-0916868.
Joseph J. LaViola Jr. was supported by NSF CAREER award IIS-
0845921 and NSF awards IIS-0856045 and CCF-1012056.

References

Ali, S., & Shah, M. (2010). Human action recognition in videos using
kinematic features and multiple instance learning. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 32, 288–303.

Alon, J., Athitsos, V., Yuan, Q., & Sclaroff, S. (2009). A unified frame-
work for gesture recognition and spatiotemporal gesture segmen-
tation. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 31(9), 1685–1699.

Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy
minimization via graph cuts. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 23(11), 1222–1239.

Cao, L., Liu, Z., & Huang, T. (2010). Cross-dataset action detection.
In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 1998–2005).

Carlsson, S., & Sullivan, J. (2001). Action recognition by shape match-
ing to key frames. In IEEE international workshop at CVPR on
models versus exemplars in computer vision.

Cheema, S., Eweiwi, A., Thurau, C. & Bauckhage, C. (2011). Action
recognition by learning discriminative key poses. In IEEE inter-
national workshop at ICCV on performance evaluation on recog-
nition of human actions and pose estimation methods (pp. 1302–
1309).

Cuntoor, N., & Chellappa, R. (2006). Key frame-based activity repre-
sentation using antieigenvalues. In Proceedings of the Asian con-
ference on computer vision (pp. 499–508).

Davis, J. W., & Tyagi, A. (2006). Minimal-latency human action
recognition using reliable-inference. Image and Vision Comput-
ing, 24(5), 455–472.

Felzenszwalb, P. F., Girshick, R. B., & Mcallester, D. (2010). Cascade
object detection with deformable part models. In Proceedings of
the IEEE conference on computer vision and pattern recognition
(pp. 2241–2248).

Fothergill, S., Mentis, H. M., Kohli, P., & Nowozin, S. (2012). Instruct-
ing people for training gestural interactive systems. In Proceed-
ings of the ACM conference on human factors in computing sys-
tems (pp. 1737–1746).

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic re-
gression: a statistical view of boosting. The Annals of Statistics,
38(2), 337–407.

Girshick, R., Shotton, J., Kohli, P., Criminisi, A., & Fitzgibbon, A.
(2011). Efficient regression of general-activity human poses from
depth images. In Proceedings of the IEEE international confer-
ence on computer vision (pp. 415–422).

Guan, P., Weiss, A., Bălan, A. O., & Black, M. J. (2009). Estimating
human shape and pose from a single image. In Proceedings of
the IEEE international conference on computer vision (pp. 1381–
1388).

Hoai, M., & De la Torre, F. (2012). Max-margin early event detectors.
In Proceedings of the IEEE conference on computer vision and
pattern recognition.

Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random
fields: probabilistic models for segmenting and labeling sequence
data. In Proceedings of the international conference on machine
learning (pp. 282–289).

Li, W., Zhang, Z., & Liu, Z. (2010). Action recognition based on a bag
of 3D points. In IEEE international workshop at CVPR on human
communicative behavior analysis (pp. 9–14).

Liu, J., & Shah, M. (2008). Learning human actions via information
maximization. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition.

Lv, F., & Nevatia, R. (2006). Recognition and segmentation of 3-d hu-
man action using hmm and multi-class adaboost. In Proceedings
of the IEEE European conference on computer vision (pp. 359–
372).

Lv, F., & Nevatia, R. (2007). Single view human action recognition us-
ing key pose matching and Viterbi path searching. In Proceedings
of the IEEE conference on computer vision and pattern recogni-
tion (pp. 1–8).

Martens, J., & Sutskever, I. (2011). Learning recurrent neural networks
with Hessian-free optimization. In Proceedings of the interna-
tional conference on machine learning (pp. 1033–1040).

Masood, S., Nagaraja, A., Khan, N., Zhu, J., & Tappen, M. (2011).
Correcting cuboid corruption for action recognition in complex
environment. In IEEE international workshop at ICCV on video
event categorization, tagging and retrieval for real-world appli-
cations (pp. 1540–1547).

Metacritic (2011). Fighters uncaged critic reviews. http://www.
metacritic.com/game/xbox-360/fighters-uncaged/critic-reviews.

Müller, M., & Röder, T. (2006). Motion templates for automatic clas-
sification and retrieval of motion capture data. In Proceedings
of SIGGRAPH/Eurographics symposium on computer animation
(pp. 137–146).

Narasimhan, M., Viola, P. A., & Shilman, M. (2006). Online decoding
of Markov models under latency constraints. In Proceedings of
the international conference on machine learning (pp. 657–664).

Norton, J., Wingrave, C., & LaViola, J. (2010). Exploring strategies
and guidelines for developing full body video game interfaces. In
Proceedings of the international conference on the foundations of
digital games (pp. 155–162).

Ramanan, D., Forsyth, D. A., & Zisserman, A. (2005). Strike a pose:
tracking people by finding stylized poses. In Proceedings of the
IEEE conference on computer vision and pattern recognition (pp.
271–278).

Raptis, M., Kirovski, D., & Hoppe, H. (2011). Real-time classifica-
tion of dance gestures from skeleton animation. In Proceedings
of SIGGRAPH/Eurographics symposium on computer animation
(pp. 147–156).

Schindler, K., & Van Gool, L. J. (2008). Action snippets: How many
frames does human action recognition require? In Proceedings of
the IEEE conference on computer vision and pattern recognition
(pp. 1–8).

Shao, L., & Ji, L. (2009). Motion histogram analysis based key frame
extraction for human action/activity representation. In Proceed-
ings of the conference on computer and robot vision (pp. 88–92).

Shen, Y., & Foroosh, H. (2009). View-invariant action recognition from
point triplets. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 31, 1898–1905.

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore,
R., Kipman, A., & Blake, A. (2011). Real-time human pose recog-
nition in parts from a single depth image. In Proceedings of
the IEEE conference on computer vision and pattern recognition
(pp. 1297–1304).

Sigal, L., Balan, A., & Black, M. J. (2010). HumanEva: Synchro-
nized video and motion capture dataset and baseline algorithm
for evaluation of articulated human motion. International Journal
of Computer Vision, 87(1–2).

http://www.metacritic.com/game/xbox-360/fighters-uncaged/critic-reviews
http://www.metacritic.com/game/xbox-360/fighters-uncaged/critic-reviews

Int J Comput Vis

Vahdat, A., Gao, B., Ranjbar, M., & Mori, G. (2011). A discrimina-
tive key pose sequence model for recognizing human interactions.
In IEEE international workshop at ICCV on visual surveillance
(pp. 1729–1736).

Viola, P., & Jones, M. (2001a). Rapid object detection using a boosted
cascade of simple features. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 511–518).

Viola, P., & Jones, M. (2001b). Robust real-time object detection. In-
ternational Journal of Computer Vision, 57(2), 137–154.

Wang, J., Liu, Z., Wu, Y., & Yuan, J. (2012). Mining actionlet ensem-
ble for action recognition with depth cameras. In Proceedings of
the IEEE conference on computer vision and pattern recognition
(pp. 1290–1297).

Yang, W., Wang, Y., & Mori, G. (2010). Recognizing human actions
from still images with latent poses. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 2030–
2037).

Yuan, J., Liu, Z., & Wu, Y. (2009). Discriminative subvolume search
for efficient action detection. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition (pp. 2442–
2449).

Zhao, Z., & Elgammal, A. (2008). Information theoretic key frame se-
lection for action recognition. In Proceedings of the British ma-
chine vision conference (pp. 1–10).

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

	Exploring the Trade-off Between Accuracy and Observational Latency in Action Recognition
	Abstract
	Introduction
	Basic Approach and Assumptions
	Latency and Action Recognition
	Defining and Measuring Observational Latency

	Related Work
	Finding Poses with Multiple Instance Learning
	Classifying Videos by Examining Individual Frames
	Smooth Approximation

	Dataset and Features
	Experiments on Temporally Segmented Actions
	Baseline Models
	Bag of Words Model
	Linear Chain CRF Model

	Results for Temporally Segmented Actions
	Benefits of Soft Approximation

	Experiments with Online Detection of Actions
	Modifying the Learning Criterion to Improve Online Detection Performance
	Measuring Latency and Accuracy
	Reducing Latency

	Reducing Computational Latency
	Examining the Boosted Features

	Managing Accuracy and Latency by Reducing Possible Actions
	Accuracy Results on Additional Datasets
	Results on MSRC-12 Kinect Gesture Dataset
	Results of MSR Action3D Dataset

	Conclusions
	Acknowledgements
	References

