
Measuring and Reducing Observational Latency when Recognizing Actions

Syed Zain Masood Chris Ellis ∗ Adarsh Nagaraja Marshall F. Tappen Joseph J. LaViola Jr.
University of Central Florida

Orlando, Florida

Rahul Sukthankar†
Robotics Institute, Carnegie Mellon University

Pittsburgh, Pennsylvania

Abstract

An important aspect in interactive, action-based inter-
faces is the latency in recognizing the action. High latency
will cause the system’s feedback to lag behind user actions,
reducing the overall quality of the user experience. This
paper presents a novel dataset and algorithms for reducing
the latency in recognizing the action. Latency in classifica-
tion is minimized with a classifier based on logistic regres-
sion that uses canonical poses to identify the action. The
classifier is trained from the dataset using a learning for-
mulation that makes it possible to train the classifier to re-
duce latency. The classifier is compared against both a Bag
of Words and a Conditional Random Field classifier and
is found to be superior in both pre-segmented and on-line
classification tasks.

1. Introduction
With the introduction of the Nintendo Wii, Playstation

Move, and Microsoft Kinect controllers, human motion is
becoming an increasingly important part of interactive en-
tertainment. Beyond gaming, these technologies also have
the potential to revolutionize how humans interact with
computers.

A key component to the success of these technologies is
the ability to recognize users’ actions. A successful system
that is intuitive and pleasant to use will have two fundamen-
tal characteristics:

1. High Accuracy - The system must be accurate at rec-
ognizing actions.

2. Low Latency - Latency is a key issue for interactive ex-
periences. A system that lags behind user actions will
feel cumbersome. This is particularly important for en-
tertainment applications, where complaints about lag

∗Syed Zain Masood and Chris Ellis contributed equally towards this
paper
†Rahul Sukthankar is now also with Google Research.

have led to very critical reviews for some motion-based
games [11].

Traditionally, accuracy has driven the design of recog-
nition systems. This paper takes a different path by also
focusing on the latency in recognition. We pay particular at-
tention to a type of latency that we refer to as observational
latency, which is the latency caused when the recognition
system must wait for the human to move or pose in a fash-
ion that is clearly recognizable, in contrast to computational
latency, which is the latency caused by the recognition sys-
tem itself. The focus of our work is to develop a thorough
understanding of the accuracy/latency trade-off which can
be used to better design activity recognizers for interactive
applications.

The contributions of this paper lie in both novel algo-
rithms and data. To make the measurement of observational
latency possible, we introduce a novel dataset where every
action is performed from a rest state. This set is unique
in that it measures how quickly a recognition system can
overcome the ambiguity in initial poses when performing
an action.

We used this dataset to train and evaluate a novel classifi-
cation strategy, based on Logistic Regression, that discrim-
inates between different actions by finding canonical body
poses that indicate the action being performed. Section 6
shows how this classifier can significantly outperform the
baseline Bag of Words and Conditional Random Field clas-
sifiers. We also introduce a learning strategy that is able
to find the poses that optimize recognition accuracy. This
learning strategy makes it possible to rigorously explore the
trade-off between accuracy and latency when spotting ac-
tions in an input stream.

2. Basic Approach and Assumptions
With the release of the Microsoft Kinect sensor, reason-

ably accurate joint positions can be recovered in real-time.
Since we will be using the data from a Kinect sensor, we as-
sume that the user will be standing within the field of view
of and facing the sensor. Our method could be extended to



Balance Kick
Climb Up Punch

Climb Ladder Twist Left
Duck Twist Right
Hop Step Forward
Vault Step Back
Leap Step Left
Run Step Right

Table 1. The list of actions used in constructing the data set.

traditional imagery, but that would require some method of
estimating pose, such as [7, 20].

Each video in the data set consists of one person per-
forming one action, from a set of 16 actions, a single time.
Each action is performed starting from a rest state, making
it possible to measure how quickly the action is recognized
from this rest state. This approach can be criticized as un-
realistic since in practice the user will be transitioning be-
tween different actions, instead of from action to rest state to
action. However, gathering transitions between all actions
for a large dataset masks the true latency of each action due
to the added cognitive delay. Data starting from a rest state
thus simplifies the process of measuring latency, which will
be discussed in Section 2.1.

We gathered a new dataset, rather than using an existing
one such as the HumanEVA dataset [17], because previous
datasets have not been gathered in a fashion that makes it
possible to measure the latency in recognition from the mo-
ment the human begins performing the actions.

Figure 1 lists the set of actions used. These actions are
chosen based on experiments in [13], which used the game
Mirror’s Edge to identify a set of actions which would be
natural for an interactive gaming experience. In Section 6.2,
results will be reported for simultaneously distinguishing
between all sixteen actions. This is substantially more ac-
tions than in previous, similar work such as [9].

2.1. Latency and Action Recognition
We define the latency of an action as the difference be-

tween the time a user begins the action and the time the clas-
sifier returns the action. This total time has several differ-
ent components. At a high level, the latency can be broken
down into the time it takes for the system to observe enough
frames so that there is sufficient information to make a good
decision, which we will refer to as the observational la-
tency, and the time it takes the system to perform the actual
computation on the observations, which we call the compu-
tational latency. It should be noted that a cleverly designed
system may be able to perform the necessary computations
in between observations, effectively masking the computa-
tional latency with the total latency just dependent on the
observational latency.

In this paper, we focus on observational latency because
reducing this latency requires examining the fundamental

recognition strategy. Once a good strategy is found, it can
often be accelerated with optimizations like classifier cas-
cades [6, 18, 19].

In the worst case, the observational latency would be the
total number of frames it took for a user to perform the ac-
tion. Latency this large significantly reduces the user ex-
perience because the system can only respond to an action
after it is already completed. In the best case, the observa-
tional latency would be one frame, at the start of the action,
but this poses a challenging detection problem. This work
presents a computational mechanism for designing classi-
fiers that reduce this latency as much as possible, while
maximizing accuracy in recognition.

2.2. Defining and Measuring Observational La-
tency

Defining and measuring the observational latency of a
system involves subtle decisions. In previous work, such as
the Action Snippets system of Schindler and van Gool [15],
and the work of Davis and Tyagi [5], the system is tested
on sequences where the action is being performed continu-
ously, ensuring that every subset of frames shows the action
in full progress.

Evaluating data on video where the action is being per-
formed continuously eliminates the ambiguity that occurs
as the user transitions into different actions. Observations
that contain the user beginning an action can be ambiguous
as the user moves through poses that are common to several
different actions. For example, as the user transitions from
an initial rest state to the climbing action or punching ac-
tion, the hands will be in a position near the head. At this
time, it will be very difficult to distinguish these actions.

This introduces a different type of latency than those
measured in [5] or [15]. As will be shown in our exper-
iments, even if it is still possible to recognize the action
from a small number of frames, many more frames may be
required for the user to assume a pose that can be easily
recognized.

The data set used here is gathered with each action start-
ing from a rest state, so the classifier must cope with am-
biguous poses at the beginning of the action. The learning
method described in Section 4 is designed to find the poses
that can be classified unambiguously. The ambiguity issues
are compounded by the large number of actions, with 16 ac-
tions instead of the 6 actions used in the KTH data set used
in [15], because an increased number of actions increases
the chance that the different actions will be visually similar.

We argue that measuring latency in this fashion is useful
because it is most likely that an action recognition system
will have to recognize multiple actions over the course of
the session with the system. In this situation, the lag per-
ceived by the user depends on how quickly the system can
detect the beginning of the action. In this dataset, this is
measured in terms of the time to move from a rest state to
a definitive frame in an action. As mentioned above, this is
done to simplify the data collection process.



3. Related Work
Our work is related to general action recognition sys-

tems [1, 9, 16, 20]. A key, unique aspect of this work lies
in our focus on the observational latency. Traditionally, ac-
tion recognition systems have focused on recognizing from
temporally segmented videos after the action has been com-
pleted. This type of recognition is less applicable for inter-
active systems. Some systems perform temporal segmenta-
tion [4, 21], but these systems also assume that the action
has already been recorded in video.

Technique exist for reducing latency in sequence data,
such as [12], however, these focus on reducing the latency
associated with decoding hidden state sequences from ob-
served data, rather than classifying individual actions as
quickly as possible.

A popular strategy for recognizing gestures, used in [2,
5] is based on fitting Hidden Markov Models to different
states in the gesture. An advantage of the system proposed
in [2] is that it is also able to spot and temporally segment
the actions. However, this segmentation has also not been
evaluated in terms of the latency induced.

Pose information has also been incorporated into track-
ing systems, such as [14], which looks for specific poses
while tracking users performing specific actions, such as
walking.

A truly interactive system will have the ability to tem-
porally segment actions in the stream of observations, such
as [2]. The structure of the dataset used here, with one ac-
tion per video, leads us to focus on just spotting the begin-
ning of the action. This will be discussed in more detail in
Section 7.

4. Finding Poses with Multiple Instance Learn-
ing

To minimize the observational latency at the outset, the
classifier must be designed to require as few observations
as possible, similar to [15]. Using the minimum number of
frames possible makes it possible to focus on the observa-
tional latency inherent in human motion and pose, as dis-
cussed in Section 2.2.

To minimize the number of observations necessary, this
classifier will classify gestures based on pose and motion
information available from two consecutive frames of data,
plus the initial frame in the video, as will be discussed
in Section 5. The underlying idea behind the classifier is
that the action can be recognized when the user assumes a
canonical pose that unambiguously indicates the action. As
will be shown in Section 6.2, this strategy can perform quite
well.

4.1. Classifying Videos by Examining Individual
Frames

In our dataset, discussed in detail in Section 5, each
video consists of one individual performing one action a
single time. This video is labeled based on the similarity of

a frame in the sequence to each canonical pose, which is as-
sociated with one of the actions. Thus, the labeling process
can be thought of as labeling a bag of frames according to
the instances inside that bag.

Formally, the classification begins with a set of weight
vectors, θ1, . . . , θNA

, where NA is the number of actions.
The first step in classifying a video is to find the frame for
each action class that is most similar to that class. Formally,
we denote this as a max-response for class c, where

rc(x) = max
f∈F

xf · θc (1)

where F denotes the set of all frames in the bag and xf

represents the vector of features for frame f .
The probability that the label l of a video should take the

correct label L can then be computed using the soft-max
function, as in logistic regression:

P [l = T |x] = exp (rT (x))∑
c

exp (rc(x)))
=

exp

(
max
f∈F

xf · θT
)

∑
c

exp

(
max
f∈F

xf · θc
) .

(2)

As mentioned above, this formulation is similar to
multiple-instance learning because the video, or bag of
frames, is classified according to how one of the frames in
that bag is classified. The use of the max operator is also
similar to the latent SVM described in [6], which is also
similar to multiple instance learning.

4.2. Smooth Approximation
While logistic regression models are typically trained

using gradient-based optimization, the introduction of the
max operator in Equation 2 makes the training criterion
non-differentiable. This can be overcome using the approx-
imation of the maximum of a set of values V = v1, ...vN
as

max(v1, v2, . . . , vN ) ≈ log (ev1 + ev2 + . . . evN ) . (3)

Incorporating this approximation into Equation 1 leads
to the following expression for computing the probability
of a particular class:

P [l = T |x] =

exp

log

∑
f∈F

exp (xf · θT )


∑
c

exp

log

∑
f∈F

exp (xf · θc)

 (4)

=

∑
f∈F

exp (xf · θT )∑
c

∑
f∈F

exp (xf · θc)
. (5)



Balance

Median Pose Examples of Poses from Data

Punch

Median Pose Examples of Poses from Data

Duck

Median Pose Examples of Poses from Data

Run

Median Pose Examples of Poses from Data
Figure 1. These skeletons shows several of the poses associated with different actions. The skeleton on the left of each panel is the median
of poses associated with each action. The skeletons on the right are examples of poses considered to be most like the canonical pose in a
particular video.

Given training examples, x1, . . . ,xNT
and training la-

bels t1, . . . , tNT
, the weights θ1, . . . , θNA

for the NA ac-
tions can be found by optimizing the log-loss criterion cre-
ated by taking the log of Equation 4. In our implemen-
tation, we use the non-linear conjugate gradient algorithm
to optimize the log-loss. To increase the generalization
performance of the system, a regularization term, R(θi) is
summed over all entries in θ and added to the final optimiza-
tion criterion. To encourage sparsity, we use a Lorentzian
term:

R(θi) = α log(1 + βθ2i ) (6)

where α and β are chosen through cross-validation.

5. Dataset and Features
Our dataset was gathered from 16 individuals using a

Microsoft Kinect sensor and the OpenNI platform to esti-
mate skeletons, and is available publicly at www.cs.ucf.
edu/˜smasood/datasets/UCFKinect.zip. In
each frame, the 3-dimensional coordinates of 15 joints are
available. Orientation and binary confidence values are also
available for each joint, but are not used in this work.

We chose a set of features that can be computed quickly
and easily from a set of frames. The basic set of features
is computed by calculating the Euclidean distance between
every pair of points in the skeleton. Using the skeletons
from the OpenNI software, the 15 skeletal positions are
used to calculate 105 distances.

To capture motion information, the Euclidean distance is
also computed between between all pairs of joint locations
between the current frame and the preceding frame, adding
225 more distance pairs. To capture the overall dynamics of
the body, similar distances are computed between all pairs
of joints between the most recent frame and the first frame
in the sequence, bringing the total number of distance pairs
up to 555. The first frame is meant to approximate the at-
rest pose of the user. In practice, this information can be

obtained by a brief initial calibration on the user in an at-
rest pose.

The time required for training the system was signifi-
cantly reduced by transforming these features into a cluster-
based quantization. Individual feature values were clustered
and replaced with the cluster index of the value. This trans-
formation leads only to a small increase in recognition ac-
curacy, but achieves a significant reduction in training time.

6. Experiments on Temporally Segmented Ac-
tions

First, the classifiers are trained on data where the tem-
poral segmentation of actions is available. The goal of the
training process is to find the weight vector θ such that a
classifier that computes class probabilities using Equation 2
classifies each video as accurately as possible. For each
classifier, this process involves the following steps:

1. Processing the frames in the video to create a bag of
feature vectors.

A feature vector is computed for each frame after the
initial frame in the video. As described in Section 5,
the vector for a particular frame is computed from the
frame, the preceding frame, and the first frame in the
video.

2. Learn the weight parameters θ1, . . . , θf according to
the method described in section 4.1.

3. For each action class, c ∈ {1, . . . , NA}, find the fea-
ture vector xf∗

c
such that xf∗

c
·θc has the highest value.

At a high-level, this is equivalent to finding the frame
in each video that most resembles the action class c.
Notice that f∗c is unique for each class.

4. Label the video with class c∗, where

c∗ = arg max
c

xf∗
c
· θc. (7)



For the learning process in each classifier, the action
samples are divided by person into two sets of 10 and 6 peo-
ple respectively. The accuracy values reported are obtained
by training on the first set of actions, and then classifying
the second set of the actions.

Figure 1 shows visualizations of the best poses learned
by the classifier. For each video in the training set, we found
the frame corresponding to f∗c for the action contained in
the video. The skeleton on the left of each panel in Fig-
ure 1 shows the skeleton created by taking the median of
each joint location across the best frames from each video
containing that action. The skeletons on the right of each
panel show examples of actual skeletons. As can be seen in
this figure, these skeletons are visually intuitive.

6.1. Baseline Models
We chose two different types of models as baseline mod-

els for comparison. We have selected a Bag of Words
(BoW) model due to the simplicity of its implementation,
and a Linear Chain Conditional Random Field (CRF) model
to take advantage of the temporal sequence of hidden state
information.

6.1.1 Bag of Words Model

We chose to use a Bag-of-Words (BoW) model for base-
line comparison because this approach is straightforward
and and has consistently performed well on a wide variety
of action datasets, e.g., [10].

The bag of words is computed using the same distances
described in Section 5. The expansion to binary features
was not used because the raw distance values performed
best on this classifier. The BoW representation is created
by quantizing the feature representation of each frame to
one of 1000 clusters. The clusters were chosen randomly
from the dataset. This had similar performance to using the
k-means algorithm to find the centers, but was significantly
faster.

Each video is represented by a histogram describing the
frequency of each cluster center. Histograms are normalized
to avoid bias based on the length of the video. The classi-
fier is implemented using an SVM based on the histogram
intersection kernel.

6.1.2 Linear Chain CRF Model

We selected a Conditional Random Field model [8] to com-
pare against due to its strength in classifying time sequence
data. The CRF-based classification strategy is similar to
Equations 2 and 4. However, in this case, the probability is
computed using a cost function Ck(y;x) based on a CRF.
This function expresses the cost of a sequence of hidden
states, expressed in the vector y, given the observation x.

Following Section 4.2, the probability of a particular

5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

60

70

80

90

100

Maximum frames

A
c
c
u

ra
c
y
 (

%
)

Accuracy vs. BoW with cropped training samples

 

 

Uncropped LR

Uncropped BoW

Uncropped CRF

LR

BoW

CRF

Figure 2. Accuracy vs. Bag of Words and CRF over videos of
varying maximum length. The horizontal dashed lines near the
top of the graph represent each classifier’s results when applied to
uncropped samples. The pose-based classifier proposed here sig-
nificantly outperforms baselines for all lengths, as well as when
uncropped videos are used.

class is expressed as

p[l = T |x] =
exp

{
min
y
−CT (y;x)

}
∑

k exp

{
min
y
−Ck(y;x)

} (8)

≈
exp

{
− log

∑
y exp (CT (y;x))

}
exp

{
− log

∑
k

∑
y exp (Ck(y;x))

} . (9)

The function Ck(y;x) is constructed to be a typical
chain-structured CRF model, with pairwise Potts model po-
tentials [3] and the terms relating the observations to states
being linear functions of the observations.

6.2. Results for Temporally Segmented Actions
To understand the time required for humans to make eas-

ily identifiable movements or poses, both the proposed sys-
tem and the baseline BoW and CRF systems were trained
and evaluated on videos of varying lengths. From the base
dataset, new datasets were created by varying a parame-
ter which will be referred to as maxFrames. Each new
dataset was created by cropping down to only the first
maxFrames frames from the video. If the video was shorter
than maxFrames, then the whole video was used.

Varying maxFrames makes it possible to measure how
much information is available in a specific time span. It
should be noted that our classifier operates by finding the
best feature vector in the first maxFrames frames, but that
this vector is itself only based on three frames. On the other
hand, the BoW and CRF classifiers uses the feature vectors
from all maxFrames frames.

As shown in Figure 2, our classifier based on finding the
best pose clearly outperforms the baseline classifiers. The



0 10 20 30 40 50 60 70 80 90 100

0.2

0.25

0.3

0.35

0.4
Average Standard Deviation of Features by Frames

A
v
e

ra
g

e
 S

td
d

e
v

Frame

Figure 3. The standard deviation aggregated over all features per
frame. On average, the most informative frame is 30 frames into
the action. Our on-line classifier can accurately recognize actions
an average of 10 frames before this peak. The right tail diminishes
rapidly since few actions reach 100 frames in length.

horizontal lines on Figure 2 indicate the performance when
each system has access to all of the frames in each video.
Overall, our system performs quite well on this large set
of actions with 98.33% accuracy, while the BoW and CRF
classifiers only achieve an accuracy of 87% and 86% re-
spectively.

This result validates our strategy of looking for “canon-
ical” poses instead of trying to aggregate pose information
over time. The BoW and CRF classifiers could be thought
of as trying to aggregate weaker pose information over time
to get an estimate of the action, but these classifiers do not
outperform our method at any frame window size.

Figure 2 also shows that with less than 15 frames each
classifier performed poorly, but with more than 15 frames
the performance of our system rises quickly. This can be
understood by considering the range of movement observed
in the beginning frames of the actions. Figure 3 depicts
the variation in feature vectors over time. Each point on
the graph is created by computing the standard deviation of
each feature across all feature vectors at the time. It is clear
that the variation in pose and movement at frame 10 is very
similar to that at frame 2, indicating that the users have not
had the time to assume poses or movement that are signifi-
cantly different. The peak in variation occurs around frame
30, but our classifier does benefit from having more frames
available because these extra frames give more opportunity
for the user to assume an easily identifiable pose. By frame
40, our system performs as well as when trained on the full
video. The drop-off for larger frames is caused by the low
number of videos that have such a large number of frames.

7. Experiments with On-line Detection of Ac-
tions

While the temporally-segmented results are useful for
understanding baseline performance, in real-world usage
scenarios, the system will have to identify when actions are

being performed. We focus on a particular sub-problem
of the general on-line action spotting task by focusing on
spotting the beginning of each action. This is in line with
our goal of characterizing and reducing the observational
latency of the recognition system.

The spotting is implemented using the probabilities com-
puted with the soft-max probability, similar to Equation 4.
The weights, θ, are the identical weights learned for the ex-
periments in Section 6. The key difference is that they are
applied to every frame.

An action is spotted by computing the probability for
each class on each frame in the video and comparing each
probability to a threshold T , which is optimized on the
training set by linear search. Once any class probability
exceeds T , that probability is used to classify the action in
the whole video. This simulates the task of detecting actions
from a stream of real-time sensor input, as the classifier does
not know a priori when the action begins or ends.

This process can be thought of as scanning the video un-
til one of the classifiers fires strongly enough, then using
that result to classify the video. If no probability exceeds T ,
the video is considered a missed detection and an error.

7.1. Modifying the Learning Criterion to Improve
On-Line Detection Performance

A weakness of the approach described in the previous
section is that the classification weights have been trained in
the situation where the classifier can view all of the frames
to make a decision. This is quite different from the on-line
detection task described above and the weights may not be
suitably adapted to this different task.

To better adapt the weights, the learning criterion can be
adapted to better reflect the on-line detection task. This can
be done by introducing a new loss Lm that is basically iden-
tical to the original training loss, but is computed on videos
that have been cropped to m frames, similar to the proce-
dure in Section 6.2 with maxFrames. This is combined with
the original loss to create the learning criterion for on-line
detection, denoted as LOn-Line(·),

LOn-Line(θ) = LFull(θ)+
∑
m∈M

(γ ·m)LM (θ)+αR(θ), (10)

where R(θ) is the regularization term from Equation 6.
In this criterion, the loss computed over smaller time

scales is added to the overall loss to add a bonus for de-
tecting the action in as few frames as possible. The set M
contains the time scales used in the training process. In our
experiments, we use the set M = {10, 15, 20}. The term
γ · m is a scaling factor. Incorporating m into the scaling
factor places more weight on correctly classifying longer
timescales. This is to avoid over-fitting noise in videos with
fewer frames.

7.2. Measuring Latency and Accuracy
It is possible to measure the observational latency of the

system directly because the system waits until it is confi-



−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3
5

10

15

20

25

30

L
a

te
n

c
y
 (

fr
a

m
e

s
)

log
10

(γ)

On−line Classifier Latency vs. Accuracy over a range of γ

 

 

−6.5 −6 −5.5 −5 −4.5 −4 −3.5 −3
50

60

70

80

90

100

A
c
c
u

ra
c
y
 (

%
)

Latency

Accuracy

Figure 4. Latency compared with accuracy, evaluated on the test-
ing set, for different values of γ. Accuracy peaks actions are clas-
sified at the 23rd frame on average. Beyond this, higher values of
γ add too much loss for earlier classification and drive down both
latency and accuracy. This is due in part to the lower amount of
distinguishing information available in earlier frames, see Fig. 3.

dent enough to make a classification. Figure 4 shows the
relationship between the observational latency and system
accuracy on the testing set for different values of γ in Equa-
tion 10.1

Figure 4 shows that as γ rises, the accuracy of the on-
line detection system gradually decreases along with the la-
tency. This indicates that the learning criterion in Equa-
tion 10 provides a parameter to tune the classifier between
accuracy and latency. At the optimal γ, the system has an
accuracy of nearly 92%. This compares well with the result
from Section 6.2 as this task is much harder. It should also
be pointed out that the on-line detector still outperforms the
baseline classifiers, even though they do not have the bur-
den of detecting the action in the stream. The classifier is
able to achieve this accuracy by the 26th frame of the ac-
tion on average, even though the standard deviation over all
features does not peak until after the 30th frame.

The reason for the drop in classification accuracy can be
seen in Figure 5, which compares the median frame cho-
sen by the classifier that can observe the entire temporally
segmented action against the median frame chosen by the
on-line detection system for each action class. As can be
seen in this figure, the on-line detection system typically
chooses a frame earlier than would be chosen if the entire
video could be viewed prior to classification. However, for a
66% average reduction in classification time, accuracy only
drops 6.6%.

Figure 6 shows the confusion matrix in the on-line de-
tection system. A column has been added for those actions
where video has been mistakenly labeled as having no ac-
tion.

1The optimal value of the threshold T was found for each value of γ
using the training set.

0 10 20 30 40 50 60 70 80

balance

climbladder

climbup

duck

hop

kick

leap

punch

run

stepback

stepfront

stepleft

stepright

twistleft

twistright

vault

Frame of classification

A
c
ti
o
n

Temporally segmented vs. On−line classification frame

 

 

TS

OL

Figure 5. Comparison of frame of highest response from full video
TS classifier with frame of classification from OL classifier. Recall
that the TS classifier must look at the entire pre-segmented action
to classify, so its frames correspond to the frames with the highest
probability of being the correct action. The OL classifier frame is
the earliest point that the probability of the correct action passes
the threshold.

100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 95 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0

0 10 88 0 0 0 0 0 2 0 0 0 0 0 0 0 0

0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 0 20

0 0 10 10 0 0 52 0 0 0 0 0 0 0 0 28 0

0 0 0 0 0 0 0 78 2 0 0 0 0 2 0 0 18

0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 98 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 95 0 0 0 5

0 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 88 0 12

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 95 0

balance

cli
mbladder

cli
mbup

duck hop
kic

k
leap

punch ru
n

ste
pback

ste
pfro

nt

ste
pleft

ste
prig

ht

tw
ist

left

tw
ist

rig
ht

va
ult

unass
igned

On−line Clasifier confusion matrix

balance

climbladder

climbup

duck

hop

kick

leap

punch

run

stepback

stepfront

stepleft

stepright

twistleft

twistright

vault

Figure 6. Confusion matrix for on-line classification with optimal
γ. Punch is now more often unassigned than confused. Leap is
confused with two actions which it is very similar to: duck and
climb up. Overall accuracy remains high at nearly 92%.

7.3. Reducing Latency
Figure 4 also shows that this learning criterion can re-

duce the latency significantly, but that comes at the cost
of significant reductions in accuracy. As γ increases, tem-
poral segmentation classification accuracy decreases grad-
ually. The on-line classifier also degrades in performance
gradually until the classifier begins firing too early, after
which accuracy drops off sharply.

From these results, the accuracy and latency of the sys-
tem appear strongly correlated. When γ is small, accuracy
is high and the system classifies only when it is highly prob-
able to be correct. When γ is too large, too much emphasis
is placed on early classification, despite there not being a



significant amount of variance in the data with which to ac-
curately classify the action, so accuracy and latency both
drop.

8. Conclusions
Human motion is fast becoming a new paradigm in user

interfaces, particularly in entertainment. These systems
need to be accurate and have low latency if they are to be-
come widespread. We have proposed a novel system for on-
line action classification that addresses both of these con-
cerns.

Our proposed method converts skeleton data from the
Microsoft Kinect to a feature vector comprised of clustered
pairwise joint distances between the current, previous, and
first frame in an action video. In this sense our classifier
identifies actions based on canonical body poses. We evalu-
ated a temporally segmented version of the classifier against
baseline Bag of Words and Conditional Random Field im-
plementations and found our model to be superior, yielding
98.33% accuracy.

We then adapted our model to an on-line variant, and
evaluated two schemes to drive down the latency due to
classification. We found that we were capable of classify-
ing a large set of actions with a high degree of accuracy and
low latency. We additionally introduced a parameter which
can be used to fine-tune the trade off between high accuracy
and low latency. With this variant we achieved an overall
accuracy of nearly 92%.

Acknowledgements
Marshall F. Tappen, Syed Z. Masood, Chris Ellis,

and Adarsh Nagaraja were supported by NSF grants IIS-
0905387 and IIS-0916868. Joseph J. LaViola Jr. was
supported by NSF CAREER award IIS-0845921 and NSF
awards IIS-0856045 and CCF-1012056.

References
[1] S. Ali and M. Shah. Human action recognition in videos us-

ing kinematic features and multiple instance learning. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
32:288–303, 2010.

[2] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff. A unified
framework for gesture recognition and spatiotemporal ges-
ture segmentation. IEEE Transactions of Pattern Analysis
and Machine Intelligence, 31(9):1685–1699, 2009.

[3] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate en-
ergy minimization via graph cuts. IEEE Transactions of Pat-
tern Analysis and Machine Intelligence, 23(11):1222–1239,
2001.

[4] L. Cao, Z. Liu, and T. Huang. Cross-dataset action detection.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 1998–2005, 2010.

[5] J. W. Davis and A. Tyagi. Minimal-latency human action
recognition using reliable-inference. Image Vision Comput-
ing, 24(5):455–472, 2006.

[6] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester. Cas-
cade object detection with deformable part models. In Pro-

ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2241–2248, 2010.

[7] P. Guan, A. Weiss, A. O. Blan, and M. J. Black. Estimating
human shape and pose from a single image. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 1381–1388, 2009.

[8] J. Lafferty, A. McCallum, and F. Pereira. Conditional ran-
dom fields: Probabilistic models for segmenting and labeling
sequence data. In Proceedings of International Conference
on Machine Learning, 2001.

[9] W. Li, Z. Zhang, and Z. Liu. Action recognition based on a
bag of 3d points. In IEEE International Workshop on CVPR
for Human Communicative Behavior Analysis, pages 9–14,
2010.

[10] J. Liu and M. Shah. Learning human actions via information
maximization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2008.

[11] metacritic. Fighters uncaged critic reviews. http:
//www.metacritic.com/game/xbox-360/
fighters-uncaged/critic-reviews, Febru-
ary 2011.

[12] M. Narasimhan, P. A. Viola, and M. Shilman. Online decod-
ing of markov models under latency constraints. In ICML’06,
pages 657–664, 2006.

[13] J. Norton, C. Wingrave, and J. LaViola. Exploring strategies
and guidelines for developing full body video game inter-
faces. In Proceedings of the Fifth International Conference
on the Foundations of Digital Games, pages 155–162, 2010.

[14] D. Ramanan, D. A. Forsyth, and A. Zisserman. Strike a
pose: Tracking people by finding stylized poses. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 271–278, 2005.

[15] K. Schindler and L. J. Van Gool. Action snippets: How many
frames does human action recognition require? In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2008.

[16] Y. Shen and H. Foroosh. View-invariant action recognition
from point triplets. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 31:1898–1905, 2009.

[17] L. Sigal, A. Balan, and M. J. Black. HumanEva: Synchro-
nized video and motion capture dataset and baseline algo-
rithm for evaluation of articulated human motion. Interna-
tional Journal of Computer Vision, 87(1–2), 2010.

[18] P. Viola and M. Jones. Rapid object detection using a boosted
cascade of simple features. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, page
511, 2001.

[19] P. Viola and M. Jones. Robust real-time object detection. In
International Journal of Computer Vision, pages 137–154,
2001.

[20] W. Yang, Y. Wang, and G. Mori. Recognizing human actions
from still images with latent poses. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2030–2037, 2010.

[21] J. Yuan, Z. Liu, and Y. Wu. Discriminative subvolume search
for efficient action detection. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2442–2449, 2009.


