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Abstract

The success of recognizing periodic actions in single-
person-simple-background datasets, such as Weizmann and
KTH, has created a need for more difficult datasets to push
the performance of action recognition systems. We iden-
tify the significant weakness in systems based on popular
descriptors by creating a synthetic dataset using Weizmann
dataset. Experiments show that introducing complex back-
grounds, stationary or dynamic, into the video causes a sig-
nificant degradation in recognition performance. Moreover,
this degradation cannot be fixed by fine-tuning the system
or selecting better interest points. Instead, we show that the
problem lies at the cuboid level and must be addressed by
modifying cuboids.

1. Introduction
For action recognition in complex environments, know-

ing where in the video the action is being performed is very
useful as it helps prune out irrelevant background move-
ment. Such accurate localization is not easily obtained, es-
pecially in the presence of substantial background motion.
Assuming we have near-perfect localization, one expects
that this localization information would make it relatively
easy to improve the recognition performance of an action
recognition system. Moreover, one might also believe that
this localization information should make it straightforward
to achieve results nearly as good as would be achieved on
videos with stationary backgrounds.

In this paper, we show that that is not necessarily the
case. We show that using localization to improve action
recognition with a bag-of-words recognition system is a
surprisingly subtle problem. We focus on bag-of-words
systems, where the classifier is based on quantizing im-
age descriptors gathered at interest points and examining
the frequency of different types of descriptors, because they
have been a very popular strategy in action recognition
[3, 18, 16, 17, 11].

Our message for bag-of-words systems can be summa-
rized in the following four statements:

1. Simply using the localization information to prune ir-
relevant interest points will not achieve the best results
possible.

2. Even perfect localization for interest point pruning
cannot achieve the best results possible.

3. Complex background motion reduces classification ac-
curacy because the cuboids themselves are corrupted
by the background motion. Systems that do not ad-
dress this corruption will be limited in performance.

4. Fortunately, even with inaccurate, automatic localiza-
tion, the effects of cuboid corruption can be amelio-
rated with simple modifications. Combined with in-
terest point pruning strategies, a system can perform
equally well on simple as well as complex datasets.

Even though localization strategies for interest point
pruning solve the action recognition problem on simple
datasets, the same cannot be said about complex datasets.
Pruning is helpful in eliminating erroneous background in-
terest points, but it fails to deal efficiently with irrele-
vant background information within selected interest point
cuboids. Current action recognition systems [12, 15, 2, 9]
fail to address this concern.

1.1. Paper Organization
Following is a brief overview of how the paper is orga-

nized:

• To understand how background complexity affects
recognition accuracy, we create a new synthesized
dataset that contains videos of simple actions on com-
plex background (refer to Section 2). Using this
dataset makes it easier to analyze how simply modi-
fying background complexity influences results.

• We present our basic classifier method and show that
it performs as well as state-of-the-art on well known
datasets (refer to Section 3). However, in Section 4,
we discuss why it fails to perform equally well on the
new synthesized dataset.



• In Section 5, we show how localization is imperative
for achieving improved results on this dataset. Even
using average automatic localization, we show how
simple but effective techniques like interest point prun-
ing and correcting cuboid corruption lead to a signifi-
cant improvement in results.

• Section 6 shows that our system works on commonly
used UCF Sports action datasets.

2. Constructing a New Dataset to Understand
the Effect of Background Complexity

In order to understand the effect of background com-
plexity on recognition performance, we create a synthetic
dataset with the aim of isolating the effects due to complex
backgrounds. We do so by constructing synthetic videos
of the same action being performed on different complex
backgrounds. This way the difference in videos comes only
from the background complexity.

To maintain focus on the problem of recognizing spe-
cific actions, we introduce a new synthetic complex dataset
based on the Weizmann [1] dataset. This dataset is con-
structed by extracting action masks, provided on-line 1, for
each Weizmann dataset video and then replacing the back-
ground with a randomly selected Youtube video.

In establishing our reasoning for the construction of a
new dataset, it is helpful to first consider the key properties
of the Weizmann dataset. It contains a single actor perform-
ing simple periodic actions with simple fixed backgrounds.
This construction forces the recognition system to focus di-
rectly on recognizing the action being performed by the ac-
tor. Also, the dataset allows us to control the quality of
localization of the action being performed.

For this new synthesized dataset, the central recognition
problem remains the same, but the task is made more diffi-
cult by the addition of the complex background. Essentially,
our goal is to only modify one aspect, the background, dur-
ing the recognition experiments.

2.1. Construction Choices
The Weizmann dataset was chosen because the actions

are simple and coherent. In addition, each video has an as-
sociated action mask which makes it possible to extract the
action and construct new videos with complex backgrounds.

We avoid the use of realistic complex datasets like
Youtube [17, 15] and Hollywood [12, 18] because isolating
the effect of background complexity from within the highly
complex structure (multiple people, multiple actions, cam-
era movement, high diversity within action class) of these
datasets is extremely challenging.

We chose not to make a similar construction for the
KTH dataset because the running and jogging actions in

1http://www.wisdom.weizmann.ac.il/˜vision/
SpaceTimeActions.html

that dataset have not been recorded perfectly. Recent action
recognition systems have near 100% accuracy on all actions
except jogging and running [7, 17, 15, 12]. This is because
the difference between these actions is not discernible for
portions of this dataset, such as the videos from person 2.

To justify this decision, we conducted an experiment,
involving humans, to gauge the difficulty of correctly rec-
ognizing actions between jogging and running. Each per-
son was shown 2 training videos of each jogging and run-
ning and then was asked to correctly label a total of 50 test
videos. Human subjects were only able to correctly recog-
nize 90% of the jogging and running videos shown. This
is approximately the same accuracy as the state-of-the-art.
The difficulty that humans have with running and jogging in
this set makes it less desirable for evaluating machine vision
systems.

2.2. Construction Methods
We create a new dataset using Weizmann dataset action

masks and background from Youtube videos. We down-
loaded a total of 15 Youtube videos making sure that each
of them contain some complex scene. We then randomly
select a Youtube video from this pool and perform matting
with one of the Weizmann dataset action mask. Keeping
the Youtube video pool considerably lower than the number
of action masks (93 in this case) ensures different actions
being performed on the same background and thus dimin-
ishing the role of background in differentiating actions.

The dataset is developed using the following strategy:

• UCF Weizmann Dynamic The whole video is matted
with the action mask (Refer to Figure 2). The moving
background makes it a much harder problem to rec-
ognize actions. This helps to analyze how increased
background complexity affects recognition.

This new dataset will be made public and provided on-
line 2. It should be noted that when creating the UCF
Weizmann Dynamic dataset, we make sure that none of the
Youtube backgrounds have humans in it. This is a necessity
as the presence of humans in background videos is most
likely to be accompanied by some action, leading to multi-
ple actions in a single video. Our aim is to isolate the effect
of background motion as opposed to multiple human ac-
tions and therefore we avoid using background videos with
humans in them.

Our methodology of creating a complex dataset for sim-
ple actions is different from [14]. Our synthesized dataset
is complete replica of the simple dataset in terms of the ac-
tion being performed, and accuracy of the recognition can
be compared directly. Since, we use matting [13] to cre-
ate new dataset, it will not add any biases, due to change

2http://www.cs.ucf.edu/˜smasood/datasets/
UCFWeizmannDynamic.zip



Figure 1. Examples of the Weizmann (top row) and UCF Weizmann Dynamic (bottom row) datasets. Each video in the UCF Weizmann
Dynamic dataset has the moving complex background. This indicates the background complexity of gradients, textures and contrasts on
which the actions are overlayed.

Figure 2. Examples of the UCF Weizmann Dynamic dataset. The figure shows frames 1, 11, 21, 31 and 41 of 2 running actions with
complex, dynamic backgrounds. The top row indicates running action overlayed on a backround video with fast moving trees with
high gradients and textures. Bottom row indicates running action overlayed on a slow moving eagle video. Care was taken not to have
background videos with humans in order to isolate the effect of background motion as opposed to multiple human actions.

in the actor performing the action. Because of the synthetic
construction of this dataset, matting artifacts could pose an
issue and this is discussed next.

2.2.1 Addressing Matting Artifacts

To measure the effect of matting artifacts, we constructed
a separate dataset by matting the Weizmann dataset action
masks with a simple static gray background. We found neg-
ligible (≈ 2%) change in performance, making us confident
that matting artifacts were not an issue.

3. Baseline Method and Performance
Having created this new synthesized dataset, we need to

decide on a baseline system to be used. In this section,
we explain the basic classifier approach we adopted and
later evaluate its performance on both simple and complex

datasets.

3.1. Baseline: Basic Bag-of-Features Classifier
We use a standard bag-of-features approach [3] as our

baseline method. We make use of the code provided on-
line1. Given any video sequence, we detect spatio-temporal
interest points, extract cuboids centered around the interest
points and compute gradient descriptors histograms. These
histogram of gradients (HoG) are concatenated and Prin-
cipal Component Analysis (PCA) is applied to project the
gradients into lower dimensional space. Visual vocabulary
is constructed using subset of the dataset followed by his-
togram representation formation for each video sequence.
For classification, Support Vector Machine (SVM) classifier
2 is learnt using histogram intersection kernel and testing is

1http://vision.ucsd.edu/˜pdollar/toolbox/doc/
2http://www.csie.ntu.edu.tw/˜cjlin/libsvm



Dataset Our
Baseline
(Section 3)

STIPS
(HOF)
[12]

Liu et al.
[15]

Weizmann 98% 92% 91%
KTH 93.5% 92% 93.8%
Youtube 65% − 71.2%

Table 1. Comparison of our baseline and other state-of-the-art
techniques on well known datasets. Comparable results on KTH
and Youtube datasets shows robustness of our baseline approach.

done using leave-one-out-cross-validation (LOOCV).
Since the Weizmann dataset is relatively small, most re-

search studies use the video reflection technique to double
the size of the dataset [19]. This involves horizontally flip-
ping each video and saving it as a new video. We use the
same reflection approach for all our datasets.

The performance of this basic bag-of-features classifier
as well as that of the state-of-the-art [12, 15] on different
datasets is shown in Table 1. Despite being a simple tech-
nique, our baseline method performs reasonably well and is
robust across different known datasets.

In the next section, we will discuss why performance de-
grades for these new synthesized complex datasets and what
measures can be taken to improve results. Derived solutions
are later tested on a realistic action dataset i.e. UCF Sports.

4. Measuring Performance Degradation
Having evaluated our basic classifier system on well

known datasets, we now focus on how the system performs
on the new synthesized dataset. Table 2 shows a compari-
son of the Weizmann and UCF Weizmann Dynamic datasets
for our baseline system. We observe a sharp drop in accu-
racy when switching from Weizmann dataset to the newly
synthesized UCF Weizmann Dynamic dataset. Since the
actions are exactly the same for both datasets, it is only log-
ical to assume that the performance degradation is caused
by the increased background complexity in the new UCF
Weizmann Dynamic dataset.

Before devising a new solution, we first try some of the
well known strategies in order to achieve improved results.
The next section details these methods and shows how they
fail to solve the posed problem.

4.1. Unsuccessful Strategies For Dealing With Per-
formance Degradation

A general approach towards solving this degradation in
performance is to fine tune the system parameters. For this
reason, we experimented using:

• different vocabulary sizes of 250, 500 and 1000 clus-
ters

• averaging of features across different temporal scales
[12, 6]

Dataset Our
Baseline
(Section 3)

STIPS
(HOF)
[12]

Weizmann 98% 92%
UCF Weizmann Dynamic 36.5% 31%

Table 2. Comparison of our baseline and other state-of-the-art
technique on the synthesized dataset. We observe a significant
drop in performance when switching from Weizmann dataset to
the new UCF Weizmann Dynamic dataset.

• cleaner vocabulary generated for Weizmann dataset

• χ2 kernel for SVM classification [20]

We achieved a maximum improvement of 2% using these
techniques, thus failing to solve the particular problem that
we pose here – recognition with complex backgrounds.

Background complexity plays a vital role when recog-
nizing actions in videos. Even if the actions are simplistic,
recognition systems performance is heavily dependent on
the background they are performed on. In the next section
we will discuss how the use of action localization goes a
long way in rectifying this problem. It is no surprise that
localization is helpful but, as will be shown below, it is the
application of localization that is equally important.

5. Utilizing Action Localization For Handling
Performance Degradation

We observed that the introduction of complex back-
ground in videos of simple actions greatly affects recog-
nition performance (refer to Table2). Since the only
change between the Weizmann and UCF Weizmann Dy-
namic datasets is of the background, it is reasonable to say
that the drop in accuracy is only due to the change in back-
ground complexity. This is because increased background
complexity leads to detection of irrelevant background in-
terest points that are a main source of performance degra-
dation. One would assume that eliminating these back-
ground interest points should solve the problem. However,
that is not the case. In fact, it is the use of localization
for both pruning irrelevant interest points and eradicating
background corruption inside cuboids that leads to optimal
results. Thus we can say that:

• Action localization is important but

• Application/use of localization is equally significant

We propose a stepwise solution to the above posed prob-
lem:

• First and foremost, we need a good automatic action
localization methodology (preferably a tight bounding
box around the person performing the action).



Figure 3. Top row shows the interest points without pruning for
Weizmann and UCF Weizmann Dynamic datasets respectively.
Bottom row shows the interest points for the same frame after
pruning. For better recognition, it is thus important to remove
background interest points.

• Once we have localization information, we eliminate
all interest points detected due to background motion

• Having removed erroneous interest points, we use lo-
calization to correct cuboid corruption due to back-
ground information i.e. mask out background pixel
values within valid cuboids.

Below, we will discuss each of the above strategies in
detail. We will show how simply localizing the action and
pruning irrelevant interest points is insufficient and that op-
timal results are achieved only when localization is directly
used to modify the cuboids. Thus, these experiments will
show that systems like [2, 9, 10] that use localization just to
eliminate irrelevant interest points will have inferior perfor-
mance compared with a system that uses localization infor-
mation to also directly modify the cuboids.

We will build on the baseline system described in Section
3. To gauge performance of our system and to provide an
upper bound on achievable accuracy, we will also present
results obtained using ground-truth localization. Ground-
truth localization masks are generated by forming a tight
bounding box around the silhouette mask, available with the
Weizmann dataset, at each frame.

Having analyzed and proposed solutions to the posed
problem, in Section 6 we will show results on the UCF
Sports dataset which is a commonly used complex action
dataset in the vision community.

5.1. Automatic Localization
Since adding background complexity leads to signifi-

cant increase in false positive interest point detections, it

Method UCF Weizmann Dynamic
Our Baseline
(Section 3) 36.5%
Automatic Localization +
Interest Point Pruning 41%
Ground-truth Localization +
Interest Point Pruning 68%

Table 3. The above table shows the accuracy on synthesized com-
plex dataset when using interest point pruning with automatic lo-
calization. Best possible results for interest point pruning with
ground-truth localization are also shown. Although results im-
prove, they are still not comparable to those achieved on Weiz-
mann dataset using our baseline system (Table 2).

is imperative to design a system that accurately detects re-
gions where the action is being performed. This is espe-
cially important for the UCF Weizmann Dynamic dataset
where there is significant background motion. Once we
have good localization of the action, discarding irrelevant
interest points and modifying cuboids can be easily imple-
mented. In reality however, such localization is hard to
achieve for realistic datasets.

We combine an off-the-shelf human detection system
[5, 4] and a saliency detection method [8] for obtaining
automatic localization information of the action being per-
formed. We employ the same technique when dealing with
realistic UCF Sports dataset in Section 6.

5.2. Interest Points Pruning

Directly running our baseline system on the new synthe-
sized dataset results in interest points detected due to both
the action and background motion. Having computed auto-
matic localization information, we can now remove irrel-
evant background interest points. The goal is to discard
all interest points lying outside the automatic localization
mask calculated previously. This technique is applied at
each frame of the action video sequence. With the removal
of these background interest points, the recognition perfor-
mance is expected to improve.

Figure 3 shows the interest points generated for the men-
tioned dataset. We see that almost all interest points in the
Weizmann dataset are on or near the person performing the
action. For the UCF Weizmann Dynamic dataset however, a
significant number of interest points are due to background
motion. It is essential that we remove these interest points
for improved recognition accuracies. We thus prune interest
points lying outside the automatic localization masks gen-
erated for this dataset. It should be noted that these local-
ization masks are in fact rectangular bounding boxes and
so different from silhouette masks. After pruning, interest
points for the Weizmann dataset remain the same. However,
interest points from the UCF Weizmann Dynamic dataset
are reduced by large extent (see Figure 3). Since pruning



Method UCF Weizmann Dynamic
Our Baseline
(Section 3) 36.5%
Automatic Localization +
Interest Point Pruning 41%
Automatic Localization +
Interest Point Pruning +
Cuboid Masking 48%

Table 4. The above table shows the accuracy on UCF Weiz-
mann Dynamic dataset using combination of Interest Point Prun-
ing (IPP) and Cuboid Masking (CM) w.r.t Automatic masks. We
can see that optimal accuracy is achieved when using both IPP and
CM strategies.

helps remove irrelevant interest points in the UCF Weiz-
mann Dynamic dataset, we see improvement in recogni-
tion results (see Table 3). We also present the best possi-
ble recognition accuracy that can be achieved using ground-
truth localization masks.

Although there is improvement in recognition accuracy
for the UCF Weizmann Dynamic dataset, it is still not com-
parable to that achieved on the Weizmann dataset (even
when using ground-truth localization). This can be at-
tributed to the presence of background information within
the cuboids extracted around the relevant interest points.
This background is incorporated in the descriptor construc-
tion process and thus negatively affects performance.

In the next section, we will discuss actions that are more
prone to the presence of background in extracted cuboids
and how localization can be used to eliminate this irrelevant
information.

5.3. Cuboid Correction

Previously, we showed how generating automatic action
localization and using it to prune interest points helps im-
prove recognition accuracy on the new synthesized complex
dataset. However, the results obtained (refer to Table 3) are
still not comparable to those achieved by baseline systems
on Weizmann dataset. In this section, we will explore the
problem further and show how eliminating background in-
formation from within relevant cuboids further improves re-
sults.

Moving actions (e.g. running, walking) are more prone
to be affected by complex backgrounds than stationary
actions (e.g. bending, waving). Despite pruning inter-
est points, cuboids may still contain background pixels;
cuboids extracted near the mask boundary contain irrelevant
spatial information while cuboids extracted for fast moving
actions (such as legs of running and walking) contain tem-
poral background information. To deal with this, we make
use of localization masks by forcing all pixels of the ex-
tracted cuboids, that lie outside the localization bounding
region, to a constant value. This helps mask out the irrele-

Method UCF Weizmann Dynamic
Our Baseline
(Section 3) 36.5%
Ground-truth Localization +
Interest Point Pruning 68%
Ground-truth Localization +
Interest Point Pruning +
Cuboid Masking 89%

Table 5. The above table shows the accuracy on UCF Weiz-
mann Dynamic dataset using combination of Interest Point Prun-
ing (IPP) and Cuboid Masking (CM) w.r.t Ground truth masks.
We can see that optimal accuracy is achieved when using both IPP
and CM strategies.

vant background pixel values, resulting in similar gradients
across same actions in the descriptor construction phase.
This modification to the cuboid is what helps in optimal re-
sults on the new synthesized complex dataset.

An illustration of this is shown in Figure 4 for the UCF
Weizmann Dynamic dataset. Each row shows the same
running action performed by the same person on different
dynamic backgrounds. The 2nd column shows some of
the extracted cuboids of the corresponding video sequence
while the 3rd column shows the same cuboids after applying
cuboid masking. The 4th shows temporal gradients corre-
sponding to column 2 while the 5th column shows temporal
gradients corresponding to column 3.

For convenience, we highlight cuboid frames showing
background pixels in column 2 through 5 with a red outlin-
ing. We observe that the background content in the cuboids
(column 2) varies significantly for each video, leading to
different temporal gradients (column 4) and eventually dif-
ferent descriptors. Although all 3 videos are of the same
action, differences in background force systems to index
these videos under different classes and thus decrease over-
all recognition performance.

On the contrary, application of our cuboid masking
technique handles this problem. Column 3 shows how
all cuboid frames composed of background content are
blackened out. As a result, temporal gradients associated
with background information inside cuboids (column 5) are
highly similar for each of the action video. This helps in
assigning the same label for all 3 videos and thus improve
recognition performance.

To strengthen our case, we measure the average struc-
tural similarity (SSIM) for temporal gradients with and
without cuboid masking of all 3 videos shown in Figure 4.
We found the average SSIM value to be 0.67 for the case
without cuboid masking and 0.75 for the case with cuboid
masking. With higher SSIM score, it is evident that cuboids
gradients are more similar after cuboid masking and hence
improve the recognition results.

Tables 4 and 5 shows results associated with cuboid



Action Cuboids Cuboids Temporal Gradient Temporal Gradient
Video (Original) (Cuboid Masking) (Original) (Cuboid Masking)

Figure 4. The figure shows the effect of cuboid masking. Column 1: Shows the same running action performed by the same person matted
on 3 different complex moving backgrounds. Column 2: Shows cuboids extracted from each video sequence. Size of each cuboid is
13x13x7, where all 7 frames are shown in a single row. Column 3: Illustrates the exact same cuboids as in column 2 after applying cuboid
masking. Column 4: Shows the temporal gradients of cuboids in column 2. Column 5: Shows the temporal gradients of cuboids in column
3. The gradient in column 4 corresponding to background content (red outlined) appear different for each video sequence. However, the
gradients of all three actions looks similar after applying cuboid masking, as depicted in column 5. This is confirmed by average SSIM
values of 0.67 and 0.75 for original temporal gradients (column 4) and cuboid masked temporal gradients (column 5) respectively.

masking for both automatic and ground-truth localization.
We see an improvement of 11.5% and 52.5% respectively
over the baseline results. We can see that even with an aver-
age automatic localization method, we are able to achieve
more than 10% improvement over the baseline perfor-
mance. This is a significant jump in performance and shows
how cuboid masking is able to handle complex dynamic
backgrounds. With better localization techniques however,
there is scope of even more improvement as depicted by the
results obtained using ground-truth localization.

Having analyzed the problem using the synthesized
datasets, we next test our system on a realistic dataset. In-
stead of Youtube [17, 15] and Hollywood [12, 18] datasets,
we used the UCF Sports dataset for this task. The reason
for this choice being that the UCF Sports dataset is more
coherent with regards to the action categories as opposed to
both Youtube and Hollywood datasets.

6. UCF Sports
In order to show that our suggestions are applicable to

real life datasets, we test our system on the UCF Sports
datasets. UCF Sports dataset has the complex background
and camera movement which were simulated in the syn-
thetic dataset. At the same time, actions are more coherent
and well captured unlike Youtube and Hollywood.

Method UCF Sports
Our Baseline
(Section 3) 68%
Automatic Localization +
Interest Point Pruning 77%
Automatic Localization +
Interest Point Pruning +
Cuboid Masking 80%

Table 6. The table shows the results on UCF Sports with Auto-
matic mask. It is evident that interest point pruning (IPP) and
cuboid masking (CM) strategies improve the accuracy by 12%

The results of different experiments on this dataset are
presented in tables 6 and 7. We see that automatic localiza-
tion alone does not improve results but when combined with
cuboid masking, we see a 12% improvement over the base-
line results. We also tested using ground-truth masks for the
best possible results and observed a 17% improvement over
the baseline results. Using either automatic or ground-truth
localization, we observe that application of localization for
the purpose of interest point pruning is not sufficient. It
is the use of localization to correct cuboid corruption that
leads to significant improvement over the baseline method.



Method UCF Sports
Our Baseline
(Section 3) 68%
Ground-truth Localization +
Interest Point Pruning 79%
Ground-truth Localization +
Interest Point Pruning +
Cuboid Masking 85%

Table 7. The table shows the results on UCF Sports with Ground-
truth mask. It is evident that interest point pruning (IPP) and
cuboid masking (CM) strategies improve the accuracy by 17%

7. Discussion and Conclusion
In this paper, we introduce a new synthesized, com-

plex dataset which we argue is better suited for analyz-
ing how recognition is affected in presence of background
complexity. We show how a change from simple to com-
plex background significantly affects the performance of
traditional recognition tools. Using our new synthesized
complex dataset, we establish that drop in accuracy is di-
rectly related to localization and its application in eliminat-
ing background information from the recognition pipeline.
A detailed analysis of the new dataset is presented, with
special emphasis on the impact of factors such as back-
ground gradients, background motion and action localiza-
tion on the recognition results. In light of the analysis, we
show how person localization combined with cuboid mod-
ifications helps tackle the background complexity problem
and thus substantially improve overall recognition results.
We show how ’proper’ use of localization for interest point
pruning and cuboid modification leads to a substantial in-
crease in performance accuracy on both the synthesized and
realistic datasets. An automatic localization method is also
presented which is shown to outperform the baseline ap-
proach. Results are shown with ground-truth masks to show
how near-perfect localization helps in improving the recog-
nition accuracy.

Acknowledgements
This work was supported by NSF grants IIS-0905387

and IIS-0916868.

References
[1] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri.

Actions as space-time shapes. In The Tenth IEEE Inter-
national Conference on Computer Vision (ICCV’05), pages
1395–1402, 2005.

[2] M. Bregonzio, S. Gong, and T. Xiang. Recognizing action
as clouds of space-time interest points. In CVPR, 2009.

[3] P. Dollár, V. Rabaud, G. Cottrell, and S. Belongie. Behavior
recognition via sparse spatio-temporal features. In VS-PETS,
pages 65–72, 2005.

[4] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester.
Discriminatively trained deformable part models, release 4.
http://people.cs.uchicago.edu/ pff/latent-release4/.

[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part-
based models. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32:1627–1645, 2010.

[6] P. V. Gehler and S. Nowozin. Let the kernel figure it out:
Principled learning of pre-processing for kernel classifiers.
In IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, pages 1–8, 06 2009.

[7] A. Gilbert, J. Illingworth, and R. Bowden. Fast realistic
multi-action recognition using mined dense spatio-temporal
features. In IEEE 12th International Conference on Com-
puter Vision (ICCV), 2009.

[8] S. Goferman, L. Zelnik-Manor, and A. Tal. Context-aware
saliency detection. In CVPR, pages 2376–2383. IEEE, 2010.

[9] N. Ikizler-Cinbis and S. Sclaroff. Object, scene and actions:
Combining multiple features for human action recognition.
In ECCV, 2010.

[10] Z. Jiang, Z. Lin, and L. S. Davis. A tree-based approach to
integrated action localization, recognition and segmentation.
In Third Workshop on Human Motion (In Conjuntion with
ECCV), 2010.
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