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Abstract— In this paper, we propose an album-oriented
face-recognition model that exploits the album structure for
face recognition in online social networks. Albums, usually
associated with pictures of a small group of people at a certain
event or occasion, provide vital information that can be used
to effectively reduce the possible list of candidate labels. We
show how this intuition can be formalized into a model that
expresses a prior on how albums tend to have many pictures
of a small number of people. We also show how it can be
extended to include other information available in a social
network. Using two real-world datasets independently drawn
from Facebook, we show that this model is broadly applicable
and can significantly improve recognition rates.

I. INTRODUCTION

Traditional face recognition systems have relied on image

features to identify the individual the photographs. The

advent of popular social networks, such as Facebook, which

host photo albums and make it possible to tag photos with

user identities, adds a new dimension of data that can be

used to help identify faces.

In Facebook, as in most photo management services,

photos are grouped into albums. These albums are a rich

source of information because they often correspond to trips,

events, or specific groups of people. In this paper, we show

how the organizational structure of photos into albums can

be used to significantly increase recognition accuracy. In

addition, as will be shown in Section III, our model based

on using album information can be applied to significantly

more pictures than other models that exploit co-occurrence

in photos, such as [18].

Much of the contribution of this work lies in modeling

how individuals tend to co-occur in photo albums. The basic

model is constructed with the underlying idea that albums

tend to contain multiple photos of a small number of people,

such as an album containing photographs from a trip. An

album may contain many photos, but it is likely that the

individuals pictured in the album will be dominated by the

small number of people that participated in the event.

After introducing this basic model, we will then show how

it can be improved and extended by considering other factors

such as previous co-occurrence in an album, friendship

information, and the identity of the person who uploaded

the photo to the social network.

The rest of the paper follows this rough outline:

• Section II illustrates the difficulties of working with data

from publicly available social networks.

• Section III shows that a CRF model based on limiting

the number of individuals appearing in an album is

useful for a significant portion of photos on Facebook.

This section will show how this model can also be

applied more widely than just modeling co-occurrence

in photographs. Following this, Section IV discusses

related work.

• Sections V through VII describe the design of the

model, inference with the model, and the training pro-

cedure for the model.

• Section VIII describes experiments showing how this

model significantly increases recognition performance.

Most importantly, for the two datasets we test, this

approach increases accuracy by around 20% over a

baseline classifier.

II. REPRODUCIBLE RESEARCH ON SOCIAL NETWORK

DATA

As will be discussed in Section VIII, we validate our

methods on real data gathered from Facebook. One of the

difficulties in working with social network data is the ability

to share that data. Common datasets, such as the PASCAL

challenge [4] and the Middlebury Stereo database [16]

have facilitated significant advances in vision technology.

However, sharing social network data is problematic due to

privacy issues since it involves sharing the information of

both users and their friends on social networks.

While it could be argued that anonymizing the type of data

used for face recognition by various transformations could

protect the identities of users, researchers have been effective

at de-anonymizing data. In 2008, researchers de-anonymized

significant portions of a dataset released by Harvard [12].

Given the constant threat of having anonymized data

cracked, we have opted for the alternative approach of re-

leasing code that will enable other researchers to experiment

with our algorithms. The author’s web site1 will contain

implementations of the learning and inference code, along

with our current implementation for gathering data.

To more strongly validate our results, we used two dif-

ferent datasets downloaded from the accounts of different

individuals and two implementations of our algorithms cre-

ated by different members of our group. As will be reported

in Section VIII, both experiments confirm the benefits of the

proposed approach.

III. THE APPLICABILITY OF AN ALBUM PRIOR

A key question facing this work is whether users tend

to organize albums in a way that makes this prior useful.

Our study on photo albums in Facebook indicates that a

prior based on the assumption that albums tend to contain

multiple photos of a small number of people is much more

1http://www.cs.ucf.edu/˜smasood/code/

FaceRecognition.zip



applicable than a model that relies on co-occurrence inside a

photo, such as [18]. To evaluate the usefulness of this prior

on the occurrence of individuals in albums, we used the

Facebook API to download all pictures visible to a single

user’s account, similar to [18]. In total, we were able to

capture 8078 pictures containing 2849 different people. In

all of the pictures, we only considered faces that had been

tagged by a user. To ensure the accuracy of tags, we applied

the OpenCV face detector to each tagged photograph we

downloaded [2]; if the detector did not indicate the presence

of at least one face in a photo, we discarded it.

In this collection of photographs, over 5735 photographs,

or 71% of the photographs, only contained one tagged face.

Presuming that, for the vast majority of photographs, all of

the faces have been tagged, this means that a model based

on co-occurrence inside an photograph [18] would help with

recognition in roughly only 29% of photographs.

In measuring the applicability of our model, we set a high

standard for its usefulness by assuming that an album prior

would only be useful if there are at least twice as many

photographs in an album as people occurring in that album.

Despite this high threshold, we found that an album prior

could still be applied to albums containing 57% of the photos

in our dataset. Roughly speaking, a prior based on limiting

occurrence in albums can be applied to nearly twice as many

photographs as a prior just based on co-occurrence inside an

photograph, such as the model in [18].

In Section VIII-D, we consider the scenario in which this

high standard is not met. Training and testing on all albums

– for some of these albums, the number of labels is more

than half of the number of photographs – results in only

a 2% performance degradation as compared to training and

testing on only albums that satisfy this threshold, indicating

the applicability of our approach.

Fig. 1 demonstrates why an album-based model can be

applied more widely. Each row corresponds to photographs

taken from a specific album. For each row, only one pho-

tograph has two people in it. Thus, a model based on

photograph co-occurrence could only be applied to one of

the photographs, while all three could be considered in an

album-based model.

An important contribution of this work is that we show

a model where the album structure can be considered in an

efficient inference scheme.

IV. RELATED WORK

The most similar work on this problem is the model of

co-occurrence in photographs proposed by Stone et al. [18].

In this model, photographs gathered from Facebook were

used to model the frequency with which individuals appeared

together in photographs.

A model like that used in [18] would be difficult to

extend to album-level co-occurrence because modeling co-

occurrence in photographs implicitly assumes that individu-

als are not repeated. However, in albums, individuals may

be repeated many times. In addition, the model in [18]

was based on a fully-connected graph between individuals

Fig. 1. The factor graph illustrating the importance of modeling how
people occur in albums instead of just pictures. Each row corresponds to
photographs taken from a specific album. A model based on just photograph
co-occurrence, shown in yellow, is only able to work with one of the three
photographs, while a model based on occurrence in an album can help
recognize faces in all three pictures.

in the photograph. This was manageable because only a

small number of people appeared in any photograph. Ex-

tending these fully-connected pairwise relationships between

all faces appearing in an album would lead to a large,

fully-connected graph representing the album. The density

of the edges in the graph could pose serious challenges for

inference in the model.

Instead, we propose a model based on penalizing album

labelings by how many individuals appear in the album,

similar to the label cost from [3]. This makes it possible

to perform inference with an efficient, greedy approximation

that performs well.

There have also been many studies conducted in the

recent past on the problem of person recognition that use



contextual information for improved results. Predominantly,

two kinds of contextual information are used: social context

information and personal context information.

Personal contextual information, such as hair and clothing,

can provide useful information to characterize a person,

because such features do not change during a short period

of time, which means the same person tends to wear the

same clothes or has the same hairstyle across different pic-

tures. Many researchers ([1], [17], [20], [19]) combine these

features with face recognition results to improve recognition

accuracy. However, the pictures in online communities might

be captured over a long period of time and uploaded at the

same time, so such personal information could be unstable.

Compared with personal contextual features, social con-

textual information captures the relationships between peo-

ple. This is believed to be more robust because relationships

change little over a long period of time. The most widely

used social feature is co-occurrence ([11], [20], [7]). In [11],

event and location groupings of pictures are obtained based

on time and locations of photographs. Later, picture co-

occurrence is used to provide a relevant short list of identities

likely to appear in new photographs. Gallagher and Chen [7]

use pairwise co-occurrence to calculate the grouping prior

distribution, which models the probability of a group of

people appearing in the same picture. Zhao and Liu [20] first

cluster pictures into albums based on time and then combine

picture co-occurrence and personal contextual information

with face recognition results to achieve recognition accuracy

for each album. These methods will narrow down the can-

didates to a small group of people, such as family members

([20], [19]) or the people going on the same trip [17]. For

an online community, however, the candidates are all the

people in the online community related to the uploader, and

effectively narrowing down the list of candidates is the main

concern in this paper.

The embedded social network in online communities

provides useful information for recognition tasks. In [18],

social network information such as friendship, pairwise co-

occurrence and face recognition score are incorporated into

a CRF model. Specifically, each detected face in one picture

is regarded as a node in the graph model, and the edges

between nodes are the social relationships. In this way, the

total energy is the weighted sum of all the potentials in the

graph.

V. ALBUM-ORIENTED FACE RECOGNITION

In this section, we describe how to construct a model

based on occurrence in albums. This model is based on

introducing a label cost, similar to the label cost described

in [3]. Essentially, a cost is assigned to each label present in

the album, regardless of whether the label appears more than

once, effectively limiting the number of people appearing in

an album. In this section, we first present a framework for

incorporating data cost and label cost; then, we introduce

the specific data cost used. Section V-C will introduce the

inference strategy used.

A. Face Recognition Using Label Cost

The central goal is to correctly label the faces in an album

F . Thus, the album F can be thought of as a set of face

images. Following the notation used in [9], the vector ~y will

denote the labelings of each face image in one album, making

its f th entry yf the label of the f th facial image in album

F . A traditional face recognition system can be described by

the energy function

E(~y) = D(~y; ~x) =
∑

f∈F

Df (yf ; ~xf ), (1)

where Df is the data cost of assigning label yf to face f ∈ F .

The vector ~xf is the vector of features gathered from the

image corresponding to the facial image f .

Our model builds on this by adding costs based on who

is in a particular labeling ~y, ignoring how many times that

label appears in ~y. With a slight abuse of notation, we will

use the notation l ∈ ~y to denote that the label l appears at

least once in the label vector ~y. Formally, we express this as

l ∈ ~y ⇔ ∃f s.t. yf = l. (2)

Following [3], we will refer to costs based on this type

of membership as label costs. Suppose there are only N

candidates {l1, . . . , lN} ∈ L for each label yf . The basic

system in (1) will be extended as

E(~y) =
∑

f∈F

Df (yf ; ~xf ) + C(~y), (3)

where C(~y) is the label cost of album labeling ~y. This label

cost combines several types of social network information.

The specific form of this cost will be introduced in Section

VI.

This model is interesting in that recognition is simultane-

ously performed on all images in the album.

B. Data Cost

The data cost can be thought of as the result from a

baseline, image-only, face recognition system. In this paper,

the data cost is implemented using the high-dimensional

V1-like features proposed in [13], [14], [15], who showed

that excellent face-recognition results could be achieved by

linear classification of very high-dimensional feature vectors

extracted from the image.

Assuming that L denotes the set of possible labels for

each face and that there are N labels in L, the data cost is

computed using the negative log of a soft-max function:

D(~y; ~x) =
∑

f∈F

− log
e
−Vyf

(~xf )

∑N
l=1 e

−Vl(~xf )
, (4)

where ~xf is vector of features extracted from an image

f . The outer summation is computed over all images in

the album F . The functions V1(~x), . . . , VN (~x) are linear

combinations of the feature vector ~x with weight vectors,

as is standard in linear classifiers.

Because the length of ~x is huge, containing 86400 en-

tries, we use a multi-class generalization of the LogitBoost



and GentleBoost algorithms [6], combined with regression

stumps, to greedily select a subset of features. In our experi-

ments, we found that a classifier using only 400 of the 86400
features performed nearly as well as linear classification

using the entire feature vector.

C. Inference

Inference in (3) is an NP-hard problem. However, this

model is similar to the well studied uncapacitated facility

location (UFL) problem [10], so it is possible to use a greedy

algorithm which would yield a O(log |L|)-approximation

([8], [10]) in this case. As we will show, our problem is not

a standard UFL problem as the label costs will depend on

each other when we introduce the social label cost. Although

there is no theoretical guarantee that a greedy algorithm will

give a good approximation, a greedy method worked well in

our experiments.

This greedy algorithm, which is described in detail in

Algorithm 1, operates by adding one label to the album

that maximizes the energy function into (3) at each iteration.

For each iteration, the greedy method scans all the available

candidates and selects the best one. It stops when adding

new candidate labels does not result in further improvement.

Algorithm 1 Greedy approximation

1: Define:

2: Q: queue containing all the candidate labels in L
3: li: ith label in Q

4: L: the set of all labels appearing in the album

5: ~w: learned weight vector (Section VII-B)

6: Ψ(~x, ~y): feature vector depicting input/output relation

(see Sections VII-A and VII-B for details)

7:

8: Initialize:

9: L∗ = ∅
10: E∗ = −∞
11:

12: while Q 6= ∅ do

13: for i = 1 to |Q| do

14: L = L∗ ∪ li
15: Ei = max

~y
~wTΨ(~x, ~y)

16: end for

17: Ê = maxi Ei

18: l̂ = li
19: if E∗ < Ê then

20: E∗ = Ei

21: L∗ = L∗ ∪ l̂

22: Eject(Q, l̂)

23: else

24: break;

25: end if

26: end while

27: return: L∗

VI. LABEL COST

The central idea of this paper is to use the label cost to

effectively constrain the number of labels in an album, so it

is important to assign an appropriate label cost to different

labels. In this section, we first present how to construct a

label cost; after that, we will illustrate each component in

detail.

The total cost for adding an individual to the album is

the combination of two costs: a personal label cost and a

social label cost. The basic idea behind this strategy is that

every label should pay its personal cost to enter into the

album. The social label cost represents the compatibility of

different labels in the album. Formally, we express the total

cost for a label as

C(~y) = Cpersonal(~y) + Csocial(~y), (5)

where Cpersonal(~y) is the personal label cost for each label

and Csocial(~y) represents the social cost for incorporating

label l. The costs are described in the following sections.

A. Personal Label Cost

The personal label cost expresses the idea that a limited

number of people should appear in an album. We define this

cost as

Cpersonal(~y) =
∑

l∈L

λI(l, ~y), (6)

where I(l, ~y) is an indicator function defined as

I(l, ~y) =

{

1 if l ∈ ~y

0 otherwise.
(7)

This definition ensures that every label entering into the

album pays its cost, which is the weight λ learned (see

Section VII).

B. Social Label Cost

The social label cost function is similar to the personal

cost formulation but is based on information from the social

network. Given a particular labeling ~y, the social cost of

including a label l in the labeling is computed by summing

costs representing the interaction between label l and all

other labels in the labeling ~y, which are formally expressed

as

Csocial(~y) =
∑

l∈L

S(l, ~y)I(l, ~y), (8)

where

S(l, ~y) =
∑

j∈L

(αfCf (l, j) + αcCco(l, j))I(l, ~y) + αuCu(l).

(9)

The three components introduced below are the social costs

derived from the social network:



• Friendship Cost. This cost measures whether individ-

uals co-occurring in the album are friends:

Cf (i, j) =

{

0 i and j are friends

1 otherwise.
(10)

• Co-Occurrence Cost. This cost is similar to the friend-

ship cost but measures whether the individuals in album

have ever co-occurred in albums in the training data:

Cco(i, j) =

{

0 i and j have co-occurred

1 otherwise.
(11)

• Uploader Cost. The uploader cost uses the history

contained in an uploader’s previous photos. Like the

previous two costs, it is based on an indicator function.

Here, we define a potential which captures the relation-

ship between an individual and the owner of the photo

album2:

Cu(i) =







0 if i has appeared in images

uploaded by the owner of F

1 otherwise.

(12)

VII. TRAINING

Training the parameters for the structural model is a

challenging problem. We use the Structural SVM (SSVM)

because it can optimize parameter values even if inference

can only return approximate solutions, as is the case in this

model [5]. In this section, we will first introduce the SSVM

method; after that, we demonstrate how to transform the

energy in (3) into the SSVM expression.

A. Structural SVM

The SSVM deals with the general problem of learning a

mapping from the inputs x ∈ X to discrete outputs y ∈ Y

based on a training sample set S = {(xi, yi)|(xi, yi) ∈ X ×
Y }. The label here is in a general form, which could be a

numbered label in the case of multiclass classification or a

parsing tree for a sentence in natural language parsing.

During training, the SSVM tries to learn a discriminant

function over input/output pairs of the form

f(x, y, w) = wTΨ(x, y), (13)

where Ψ generates a feature vector which depicts relations

between inputs and outputs and w are model parameters that

need to be learned.

A prediction is made by maximizing f over the response

variable for a specific given input x. Formally, this can be

expressed as

h(x) = argmax
y∈Y

f(x, y). (14)

To learn this map, SSVMs solve the following quadratic

program

min
w,ξ≥0

1

2
‖w‖2 +

C

n

n
∑

i=1

ξi,

2This model assumes that all photos in an album have been uploaded by
a single user.

∀i, ∀y ∈ Y \yi : w
TΨ(xi, yi) ≥ wTΨ(xi, y) +∆(yi, y)− ξi,

where ∆(yi, y) is the loss function indicating how far h(xi)
is from the true output yi.

Introducing a constraint for every wrong output is typically

intractable, and Joachims proposed a cutting plane algorithm

which defines a separation oracle and finds the most violated

label, constructs a sufficient subset of the constraints using

these labels and iteratively solves the QP only over this sub-

set; this guarantees polynomial time runtime and correctness

[9].

B. Learning the Weight Vector

The parameters in our model that need to be learned are

the personal label cost weight λ and the three weights αf ,

αco and αu for the social costs. These parameters can be

optimized using the SSVM training procedure by expressing

the energy in (5) as the inner product of the weight vector

~w and feature vector Ψ(~x, ~y). This can implemented by

representing ~w as

~w = [1, λ, αf , αco, αu]. (15)

The vector Ψ(~x, ~y) is defined as

Ψ(~x, ~y) = [D(~y; ~x), Cperson(~y), Zf (~y), Zco(~y), Zu(~y)]
T ,

(16)

where

Zf (~y) =
∑

l∈~y

∑

j∈~y

Cf (l, j) (17)

Zco(~y) =
∑

l∈~y

∑

j∈~y

Cco(l, j) (18)

Zu(~y) =
∑

l∈~y

Cu(l) (19)

For the small number of parameters in this model, we also

had success with a randomized coordinate ascent approach,

though the structural SVM solution was much faster.

VIII. EXPERIMENTS

In this section, we present experimental results conducted

on two datasets collected from Facebook. In the following

section, we will first give a detailed description about the

datasets; then, we compare our results with a baseline system.

After that, we combine our method with the model proposed

in [18].

A. Datasets

As described in Section I, we replicated our experiments

on two different datasets, using different implementations

of our algorithms. These experiments were conducted sepa-

rately on each dataset.

Both datasets were gathered from the Facebook accounts

of volunteers, using a downloading application similar to that

used in [18]. The datasets differed in the users used to capture

the photographs. In the first dataset, the photographs were

gathered from all of the albums visible to one user. The

second dataset was gathered from a larger set of volunteers



that agreed to let us access photographs in their Facebook

accounts, using the same permissions mechanism that any

Facebook application can use to access personal data. We

accessed all photos in albums available to our downloading

application. We also stored available social network infor-

mation, including friendship relationships, the identity of the

uploader of each picture, and the way in which people have

co-occurred in tagged photographs.

Not surprisingly, although these applications gave us ac-

cess to photographs of hundreds of individuals, most indi-

viduals only had a handful of photographs. To ensure that

we had enough data to properly perform both training and

evaluation, we culled the dataset to include only individuals

with a large number of samples available. This resulted in

one dataset with 1951 facial images of 25 people and a

second dataset with 1994 facial images of 15 people.

Each dataset is then partitioned into three parts:

1) A set of albums and images to be used to train the

weights for the data cost. These images are used to

train the linear classification weights for the image-

only training.

2) A second set of albums and images that will be used to

train the weights for the personal label and social costs.

It is necessary to use a second training set because the

training process used to learn the linear weights can

separate the training data perfectly. If the training data

in the first partition is used, then the data cost will be

unrealistically accurate, and not enough weight will be

given to the personal label and social costs.

3) A third set that will be used as a testing set. In our

experiments, this test set included 454 images of faces

in our first dataset and 487 images of faces in our

second dataset.

The albums are divided chronologically to simulate how

photographs would arrive in a social network: the first

partition contains the oldest albums, while the third contains

the newest.

B. Results

Fig. 2 summarizes our results for both datasets. The

baseline bar in the graph shows the accuracy achieved using

only the data cost, which is computed using a linear classifier

and the image features extracted from each face image.

Implementing a personal label cost, as in (3), leads to an

improvement in recognition accuracy for both datasets. This

cost is based on the number of labels present in the album.

The accuracy for the first dataset is improved from 38.1%

(baseline) to 45.4%, and the accuracy for the second dataset

is improved from 66.8% (baseline) to 75.0%.

The remaining bars in Fig. 2 show the accuracies of

different combinations of social costs from Section VI-B.

Most importantly, for both datasets, incorporating some form

of a social label cost improves recognition performance

considerably. Out of all of the social costs we explored,

the uploader cost, which penalizes a potential candidate in

a photograph if he or she has never appeared in any album

uploaded by the owner of the photograph, seems to be the
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Fig. 2. This figure shows a visualization of the improvement provided by
incorporating label-based priors into recognition. DC refers to the Data Cost,
PLC refers to the Personal Label Cost, Co-Oc refers to the Co-Occurrence
Cost, FC refers to the Friendship Cost, and UC refers to the Uploader
Cost. In both datasets, adding a personal label cost significantly increases
recognition performance over the image-only baseline face recognition
system (described in Section V-B). Adding additional social costs also leads
to further improvements. In both of the datasets, over 400 photographs were
tested.

most important. The combination of the data cost, personal

label cost, co-occurrence cost, and uploader cost improves

accuracy on the first dataset from 38.1% to 61.3% and

improves the accuracy on the second dataset from 66.8%

to 84.5%.

On our first dataset, we also explored the use of a per-

person label cost, tuning a specific weight for each person

(e.g. learning λl for each l in L); this increased accuracy

by a further 5% on this dataset. However, we feel that

incorporating a label cost specific to each individual in a

large-scale social network would be infeasible, so we did

not pursue this further.

C. Consistency of Results Between Datasets

For both datasets, incorporating the label-based priors

yields consistent improvements: around 7% for the first and

8% for the second. Likewise, the inclusion of additional

social costs further improves recognition performance on the

two sets, up to a maximum gain of 23% for the first and 18%
for the second.

We observe, though, that simply using the image-based

data cost produces varied results across the datasets. This

variation is most likely due to the differing number of people

present in each of these datasets and not a result of our

learning methodology. As expected, the dataset featuring

more people – in this case, the first – achieves a lower

accuracy. However, comparable performance gains achieved

on both datasets when utilizing the personal and social label

cost indicate the usefulness of our system across various

scenarios.

D. Albums With Many People

While the results in the previous section demonstrate

that the addition of a label cost can significantly improve



recognition results, this cost is designed for albums where

the number of photos outnumbers the number of individuals.

While we have shown that this behavior is common, we

cannot expect it to hold across all albums.

To investigate this issue, we characterized each album with

ratio measuring the number of individuals in the album with

respect to the number of facial images; we will refer to this

value as the IdentityRatio:

IdentityRatio =
|LF |

|F |
, (20)

where |LF | is number of individuals appearing in album F

and |F | is the number of facial images in F . Because the

set L is used to denote all possible labels, LF denotes the

labels in album F .

For the purpose of experimentation, we manually choose

a threshold of 0.5 for the IdentityRatio and so only apply the

label cost to albums having a value ≤ 0.5. The threshold is

selected based on the observation that the label cost can be

applied to the simplest possible album, which contains two

facial images belonging to only one person.

Using this ratio, we can split our training sets into one set

of albums well-suited for the label cost (i.e. those albums

with IdentityRatio ≤ 0.5) and another set containing all

albums, some of which could be problematic (i.e. some

albums may have IdentityRatio > 0.5). The resulting perfor-

mance difference is tiny: when training and testing on “good”

albums, which are consistent with our label cost prior, we see

only a very slight improvement – approximately 2% – over

training and testing on the complete dataset. This suggests

that incorporating the label cost does not induce instability

into the recognition system.

E. Comparison with Image Co-Occurrence Model

Our use of a CRF model makes it convenient to use

it to aid a model based on co-occurrence in photographs,

similar to [18]. Accordingly, we culled our dataset to find

photographs containing two individuals in our set3. This was

difficult because a number of photos contained multiple in-

dividuals, but our tests are limited to a subset of individuals.

Because of the restriction in finding photographs with two

people, our training set was limited to 33 pictures. The testing

set contained 32 for the same reason. While this set is too

small to make statistically significant results, our preliminary

experiments have shown that when these models can be

combined, recognition rates improve by around 5%.

IX. CONCLUSIONS AND FUTURE WORK

The album storage structure for photos in a social net-

works provides a strong source of information regarding the

identities of the people in those photographs. This paper

has introduced a structural SVM-based system that is able

3The number of people per photograph was limited to two, as in [18], to
make brute-force inference possible during training.

to exploit this information. As shown in the experiments,

utilizing this information leads to significant improvements

in recognition accuracy.

In future work, we hope to better integrate models like the

work of Stone et al. [18] that model co-occurrence inside

pictures.
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