
Measuring and Reducing Observational
Latency when Recognizing Actions

C. Ellis, S. Masood, A. Nagaraja, M. Tappen, J. LaViola,1

R. Sukthankar2

1Department of Computer Science
University of Central Florida

2Robotics Institute
Carnegie Mellon University

and
Google Research

ICCV 2011 Workshop on HCI



Introduction
Temporally Segmented Action Recognition

On-line Classification
Conclusion

Fundamentals
Dataset

What This Talk is About

Novel Action Recognition Algorithm
Parameterized to exploit
accuracy/latency trade-off
Temporally segmented and online
Novel Dataset leveraging skeleton data
from Microsoft Kinect
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Fundamental Criteria

High Accuracy
The system must be accurate at recognizing actions

Low Latency
A system that lags behind user actions will feel cumbersome

Goal: Understand and exploit the trade-offs between latency
and accuracy
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Why are Accuracy and Latency Important?

Fighters Uncaged Metacritic Reviews (Avg. score: 32/100)
...responds very badly to your moves...
...sub-par controls...
...entirely ruined by how it actually plays and controls...
...frustrates far more than it excites...
...fails to register most of the movements, and huge lag
problems...
...it’s inexcusable that a game whose sole interaction is
hand-to-hand combat should not be able to tell the
difference between dodging and headbutting.
...unresponsive and downright inaccurate controls...
Poor motion controls...
...poor movement recognition...
You have more luck controlling a lifeless rock.
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Computational Latency vs. Observational Latency

Computational Latency
Time till the system finishes computation on the observations

Observational Latency
Time till system observes enough frames to make an accurate
prediction of the action being performed
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Contributions

A novel system for multiway on-line classification that
addresses both latency and accuracy

Recognizes on minimal frames (canonical pose)
Parameterized to exploit accuracy/latency trade-off

A new dataset containing skeleton pose estimation of
sixteen actions
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Novel Dataset

Gameplay from Mirror’s Edge

Microsoft Kinect sensor using OpenNI
16 individuals performing 16 actions
5 repetitions of each action per person
15 joints per frame (position and
orientation)
Actions drawn from game Mirror’s Edge
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Features

555 pairwise Euclidean distances between joints
(position/rotation invariant)

Within current frame
Between current and previous frame (captures motion)
Between current frame and first frame (captures overall
change, easy to estimate)

Features clustered by 5 clusters per pairwise distance
Improves training time substantially
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Finding Canonical Poses

Leap

Duck

Kick

Vault

Novel Action Recognition Algorithm

Want to classify with as few
observations as possible
Action is recognized when actor
assumes unambiguous pose
Train on maximum likelihood class over
all frames of video
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Deriving Action Class Probability

P[l = T |~x ] =
exp

(
maxf∈F ~xf · θT

)∑
c exp

(
maxf∈F ~xf · θc

)
max (v1, v2, ..., vN) ≈ log (ev1 + ev2 + ...evN )

P[l = T |~x ] =
∑

f∈F exp
(
~xf · θT

)∑
c
∑

f∈F exp
(
~xf · θc

)
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Training and Classifying Segmented Video

1 Process frames into feature vectors
2 Learn weight parameters θ1, ..., θf
3 For each action class c ∈ {1, ...,NA}, find feature vector ~xf∗c

such that ~xf∗c · θc has the highest value
4 Label the video with class c∗, where c∗ = arg maxc ~xf∗c · θc
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Baseline - Bag of Words

BoW works well on a wide variety of classification tasks
Computed using (undiscretized) pairwise distance features
Frames each assigned to one of 1000 clusters
Videos represented by normalized histogram of cluster
frequencies
Classification performed by SVM based on histogram
intersection kernel
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Baseline - Conditional Random Field

CRFs well-suited for streams of observations
Chain structured CRF model with pairwise Potts model
potentials

P[l = T |~x ] =
exp

{
− log

∑
y exp(CT (y ; x))

}
exp

{
− log

∑
k
∑

y exp(Ck (y ; x))
}
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Accuracy vs. BoW and CRF over varying video length
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Average Std. Deviation of Features by Frames
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Online Detection of Actions

Closer to real-world classification tasks
Real world actions must be picked out of stream
Must classify as quickly as possible to ensure low latency

Apply Canonical pose detector per frame and return a
classification when any probability exceeds an empirically
chosen threshold T
If no frame in an action video has a action probability
greater than T , the video is considered a missed detection
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Online classifier confusion matrix
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Temporally Segmented vs. Online classification
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Modifying the Learning Criterion

Weights trained in situation where all frames of action are
visible
Does not match real world
Modify the loss to penalize for detecting later in the action
Parameterize new loss function to offer latency/accuracy
trade-off
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Modifying the Loss to Improve Online Detection

Bias learner to classify earlier by adding weighted sum of
loss terms on truncated observation sequence
M = 10,15,20
γ ·m is linear scaling factor
Higher weight on longer video sequences to avoid
overfitting on noisy short videos

LOnline(θ) = LFull(θ) +
∑
m∈M

(γ ·m)LM(θ) + αR(θ)
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Online Latency vs. Accuracy over a range of γ
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Conclusion

We out-perform baselines for temporally segmented action
recognition
Online classification achieves good accuracy for large
number of actions
Contributed a parameterized technique for biasing learning
in favor of low latency or high accuracy
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Future Work

Collect new dataset using Kinect SDK
Capture and detect actions with transitions
Gesture spotting from unsegmented stream of frames
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Questions?

Dataset available at
www.cs.ucf.edu/~smasood/datasets/UCFKinect.zip

Contact
Chris Ellis
University of Central Florida
chris@cs.ucf.edu
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